Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mediators Inflamm ; 2022: 9621668, 2022.
Article in English | MEDLINE | ID: mdl-35082553

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of gastrointestinal (GI) tract with dysregulated mucosal immune functions and disturbed commensal ecosystem of the intestinal lumen. IBD is categorized into two major subsets: Crohn's disease (CD) and ulcerative colitis (UC). Though advent of biologics has shifted the treatment with relatively longer remission compared to small molecule pharmaceuticals, patients still suffer from long-term complications. Since gut-microbiome is now accepted as another human organ holding potential for long-lasting human health, probiotics, and its engineering hold great promises to treat several previously untreatable chronic inflammatory conditions including IBD. Several emerging biological engineering tools have unlimited potential to manipulate probiotic bacterial system. These can produce useful therapeutic biologics with a goal to either ameliorate and/or treat previously untreatable chronic inflammatory conditions. As gut-microbiome is diverse and vary in different ethnic, geographic, and cultural human population, it will be important to develop vision for personalized probiotic treatment and develop the technology thereof to make personalized probiotic options a reality. The aim of this review paper is to present an overview of the current knowledge on both pharmacological and nonpharmacological IBD treatment modalities with a special emphasis on probiotic strains that are developed through the probiotic engineering. These engineered probiotics contain the most anti-inflammatory cytokines found within the human immune response and are currently being used to treat the intestinal inflammation in IBD for the IBD treatment.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Probiotics , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Ecosystem , Humans , Inflammatory Bowel Diseases/therapy , Probiotics/therapeutic use
2.
Blood Adv ; 4(15): 3728-3740, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32777070

ABSTRACT

It is not clear whether disrupted age-specific hematopoiesis contributes to the complex manifestations in leukemia patients who carry identical mutations, particularly in pediatric and adult patients with similar clinical characteristics. By studying a dual-age-specific mouse model, we demonstrate that (1) loss of Pten during the fetal-to-adult hematopoiesis switch (hematopoiesis switch) causes sustained fetal hematopoiesis, resulting in death in juvenile leukemia; (2) myeloid-biased hematopoiesis in juvenile mice is associated with the sustained fetal properties of hematopoietic stem cells (HSCs); (3) the age specificity of juvenile myelomonocytic leukemia depends on the copy number of Pten and Nf1; (4) single-allelic Pten deletion during the hematopoiesis switch causes constitutive activation of MAPK in juvenile mice with Nf1 loss of heterozygosity (LOH); and (5) Nf1 LOH causes monocytosis in juvenile mice with Pten haploinsufficiency but does not cause lethality until adulthood. Our data suggest that 1 copy of Pten is sufficient to maintain an intact negative-feedback loop of the Akt pathway and HSC function in reconstitution, despite MAPK being constitutively activated in juvenile Pten+/ΔNf1LOH mice. However, 2 copies of Pten are required to maintain the integrity of the MAPK pathway in juvenile mice with Nf1 haploinsufficiency. Our data indicate that previous investigations of Pten function in wild-type mice may not reflect the impact of Pten loss in mice with Nf1 mutations or other genetic defects. We provide a proof of concept that disassociated age-specific hematopoiesis contributes to leukemogenesis and pediatric demise.


Subject(s)
Hematopoiesis , Leukemia , Adult , Age Factors , Animals , Child , Disease Models, Animal , Hematopoietic Stem Cells , Humans , Leukemia/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...