Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297371

ABSTRACT

Pulmonary drug delivery aims to deliver particles deep into the lungs, bypassing the mouth−throat airway geometry. However, micron particles under high flow rates are susceptible to inertial impaction on anatomical sites that serve as a defense system to filter and prevent foreign particles from entering the lungs. The aim of this study was to understand particle aerodynamics and its possible deposition in the mouth−throat airway that inhibits pulmonary drug delivery. In this study, we present an analysis of the aerodynamics of inhaled particles inside a patient-specific mouth−throat model generated from MRI scans. Computational Fluid Dynamics with a Discrete Phase Model for tracking particles was used to characterize the airflow patterns for a constant inhalation flow rate of 30 L/min. Monodisperse particles with diameters of 7 µm to 26 µm were introduced to the domain within a 3 cm-diameter sphere in front of the oral cavity. The main outcomes of this study showed that the time taken for particle deposition to occur was 0.5 s; a narrow stream of particles (medially and superiorly) were transported by the flow field; larger particles > 20 µm deposited onto the oropharnyx, while smaller particles < 12 µm were more disperse throughout the oral cavity and navigated the curved geometry and laryngeal jet to escape through the tracheal outlet. It was concluded that at a flow rate of 30 L/min the particle diameters depositing on the larynx and trachea in this specific patient model are likely to be in the range of 7 µm to 16 µm. Particles larger than 16 µm primarily deposited on the oropharynx.

SELECTION OF CITATIONS
SEARCH DETAIL
...