Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 66-77, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36601808

ABSTRACT

New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site. A 1.15 Šresolution crystal structure of the glycerol-free CYP124-CHimi complex reported here shows multiple conformations of CHImi and the CYP124 active site which were previously restricted by glycerol. Complementary molecular dynamics simulations show coherence of the ligand and enzyme conformations. Spectrophotometric titration confirmed the influence of glycerol on CHImi binding: the affinity decreases more than tenfold in glycerol-containing buffer. In addition, it also showed that glycerol has a similar effect on other azole and triazole CYP124 ligands. Together, these data show that glycerol may compromise structural-functional studies and impede rational drug-design campaigns.


Subject(s)
Cytochrome P-450 Enzyme System , Mycobacterium tuberculosis , Ligands , Models, Molecular , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Antitubercular Agents , Crystallography, X-Ray
2.
Front Mol Biosci ; 9: 1100032, 2022.
Article in English | MEDLINE | ID: mdl-36699703

ABSTRACT

Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.

3.
J Mol Biol ; 433(4): 166763, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33359098

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 - the most potent among them - can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.


Subject(s)
Energy Metabolism , Host-Pathogen Interactions , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/metabolism , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Enzyme Activation , Host-Pathogen Interactions/immunology , Humans , Immunity , Isoenzymes , Models, Molecular , Oxysterols/chemistry , Oxysterols/metabolism , Recombinant Proteins , Structure-Activity Relationship , Tuberculosis/microbiology
4.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081390

ABSTRACT

Spreading of the multidrug-resistant (MDR) strains of the one of the most harmful pathogen Mycobacterium tuberculosis (Mtb) generates the need for new effective drugs. SQ109 showed activity against resistant Mtb and already advanced to Phase II/III clinical trials. Fast SQ109 degradation is attributed to the human liver Cytochrome P450s (CYPs). However, no information is available about interactions of the drug with Mtb CYPs. Here, we show that Mtb CYP124, previously assigned as a methyl-branched lipid monooxygenase, binds and hydroxylates SQ109 in vitro. A 1.25 Å-resolution crystal structure of the CYP124-SQ109 complex unambiguously shows two conformations of the drug, both positioned for hydroxylation of the ω-methyl group in the trans position. The hydroxylated SQ109 presumably forms stabilizing H-bonds with its target, Mycobacterial membrane protein Large 3 (MmpL3). We anticipate that Mtb CYPs could function as analogs of drug-metabolizing human CYPs affecting pharmacokinetics and pharmacodynamics of antitubercular (anti-TB) drugs.


Subject(s)
Adamantane/analogs & derivatives , Antitubercular Agents/chemistry , Cytochrome P-450 Enzyme System/chemistry , Ethylenediamines/chemistry , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Adamantane/chemistry , Adamantane/pharmacology , Antitubercular Agents/pharmacology , Binding Sites , Cytochrome P-450 Enzyme System/metabolism , Ethylenediamines/pharmacology , Hydroxylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...