Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Virol Methods ; 208: 63-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25116202

ABSTRACT

The high infection levels due to Olive latent virus 1 (OLV-1), Olive mild mosaic virus (OMMV) (alphanecrovirus) and Tobacco necrosis virus D (TNV-D) (betanecrovirus) in Portuguese olive orchards prompted us to develop a rapid PCR-based assay for the simultaneous detection of these viruses aimed at the sanitary selection and marketing of plant material in compliance with European Union regulations. A pair of degenerate oligonucleotide primers, parRdRp5' and parCoat3' was designed based on conserved regions located in the RNA-dependent RNA polymerase (RdRp) and coat protein (CP) genes of these viruses and one other alphanecrovirus, Tobacco necrosis virus A. Its use in RT-PCR assays generated a product of ca. 2000 bp for the 4 viral species tested. These primers were compared with virus specific primers in multiplex RT-PCR, and identical results were obtained. Its application to dsRNA extracted from 54 olive field growing trees originated the expected ca. 2000 bp amplicon in 17 trees. The virus identity was determined by sequencing the cloned RT-PCR products. No TNV-A was found. The RT-PCR assay using the degenerate primers described in this study were shown to be reliable in detecting any of the above-mentioned alpha- and betanecroviruses, and it is as sensitive as that which uses virus specific primers in multiplex assays. Therefore, this assay is well suited for the rapid screen of virus-free plant material in selection and improvement crop programmes. Additionally, it has the potential to reveal virus diversity and the presence of new viruses, provided the RT-PCR generated amplicon is further sequenced.


Subject(s)
DNA Primers , Olea/virology , Plant Diseases/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Tombusviridae/isolation & purification , Capsid Proteins/genetics , DNA Primers/genetics , Portugal , RNA-Dependent RNA Polymerase/genetics , Sensitivity and Specificity , Time Factors , Tombusviridae/classification , Tombusviridae/genetics
3.
Arch Virol ; 159(6): 1351-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24352437

ABSTRACT

The CP gene variability among 21 olive latent virus 1 (OLV-1) isolates obtained from different hosts and locations and at different times was assessed. Amplicons obtained by RT-PCR were cloned, and at least 10 sequences from each isolate were analyzed and compared. OLV-1 sequences available in GenBank were included. The encoded CPs consisted of 270 amino acids, except those of isolates G1S and C7 (269 aa) and G6 (271 aa). Comparison of CP genomic sequences of the isolates under study showed very low values of nucleotide diversity, 0.02, and maximum nucleotide distances between (0.087) or within isolates (0.001). Although very few nucleotide sequence differences were observed among the isolates, olive isolates exhibited lower diversity (0.012). In addition, at position 158 (157 in C7 and G1S and 159 in G6) of the deduced aa sequences, an alanine residue was found to be conserved among the olive isolates. In citrus and tulip isolates, a threonine residue was present at position 158, whereas a valine was present at this same position in tomato isolates. Phylogenetic analysis indicated that OLV-1 isolates clustered in five groups according to original host. However, G6, originally recovered from olive but repeatedly inoculated and maintained in N. benthamiana plants for 8 years in our laboratory, was separated from other isolates. This may be attributable to adaptation to the experimental host over time. There was no correlation of phylogenetic grouping of isolates based on geographical location or year of collection. Strong negative selection may have contributed to the low diversity among the OLV-1 CP isolates.


Subject(s)
Capsid Proteins/genetics , Genetic Variation , Tombusviridae/classification , Tombusviridae/genetics , Cloning, Molecular , Cluster Analysis , Molecular Sequence Data , Phylogeny , Plants/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Selection, Genetic , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Tombusviridae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...