Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 362, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702604

ABSTRACT

BACKGROUND: There are numerous challenges associated with producing desired amounts of secondary metabolites (SMs), which are mostly unique and cannot be chemically synthesized. Many studies indicate that nanoparticles (NPs) can boost the production of SMs. Still, the precise manner in which NPs induce metabolic changes remains unidentified. This study examines the influence of eco-friendly silver NPs (AgNPs) on the chemical makeup and toxicity of Pimpinella anisum L. (anise). RESULTS: AgNPs were introduced into anise callus cultures at different concentrations (0, 1.0, 5.0, 10, and 20 mg/L). The induced oxidative stress was tracked over intervals of 7, 14, 28, and 35 days. Chemical composition evaluations were carried out on the 35th day. Within the first 14 days, plant stress was evident, though the plant adapted to the stress later on. Notably, the plant showed high tolerance at 1 mg/L and 5 mg/L concentrations despite increased toxicity levels. However, relatively high toxicity levels were identified at 10 and 20 mg/L. The AgNP-induced stress significantly impacted anise SMs, particularly affecting fatty acid content. In the 10 and 20 mg/L AgNP groups, essential metabolites, including palmitic and linoleic acid, showed a significant increase. Polyunsaturated (omega) and monounsaturated fatty acids, vital for the food and pharmaceutical industries, saw substantial growth in the 1 and 5 mg/L AgNP groups. For the first time, vanillyl alcohol and 4-Hydroxybenzoic acid were detected along with various phenolic compounds, such as t-anethole, Salicylic acid, and Thiamazole. CONCLUSION: AgNPs can function as an elicitor to efficiently generate essential SMs such as omegas and phenolic compounds in anise callus culture. This study explores the application of AgNPs as plant elicitors in anise SM production, offering invaluable insight into potential uses.


Subject(s)
Metal Nanoparticles , Pimpinella , Secondary Metabolism , Silver , Metal Nanoparticles/toxicity , Silver/toxicity , Pimpinella/metabolism , Pimpinella/drug effects , Secondary Metabolism/drug effects , Oxidative Stress/drug effects
2.
Protoplasma ; 257(6): 1655-1665, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32734410

ABSTRACT

The purpose of the main research was to investigate the effects of methyl jasmonate (MeJA) (0.05, 0.25, 0.5, and 2.5 mM) on the pollen germination and tube elongation of Pinus nigra. Total pollen germination rate increased after MeJA treatments while the most enhancement was observed at 0.05-mM MeJA. No germination was observed at 2.5-mM MeJA. Although the unipolar and bipolar germination were observed in all groups, no significant changes were observed in unipolar and bipolar pollen germination rates after MeJA treatments. Tube length increased only at 0.05-mM MeJA. Although branched tubes were observed in all groups, branched tube rate increased only at 0.05-mM MeJA. Although two branched, three branched, and consecutive branched tubes were observed in all groups, the most common branching type was two branched type in all groups. Although anisotropy of actin filaments in the shank and apex of unbranched tubes decreased after MeJA treatments, the most decrease was observed at 0.05-mM MeJA. Also, anisotropy of actin filaments in the shank and in pre-branching region of branched tubes decreased only at 0.25-mM MeJA. Anisotropy of both two apexes of a branched tube changed only at 0.25- and 0.5-mM MeJA. Callose accumulation in the apex of unbranched and branched tubes increased in parallel with the increase in MeJA concentration. However, more callose is accumulated in one apex than the other apex of a branched tube. In conclusion, MeJA affected the actin organization, changed the callose distribution, and altered the pollen tube growth of Pinus nigra.


Subject(s)
Acetates/chemistry , Cyclopentanes/chemistry , Oxylipins/chemistry , Pinus/chemistry , Germination , In Vitro Techniques
3.
Mol Biol Rep ; 46(3): 2703-2711, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30911971

ABSTRACT

Aluminum (Al) is one of the most important stress factors that reduce plant productivity in acidic soils. Present work thereby analyzed Al-induced genomic alterations in Bryophyllum daigremontianum clones using RAPD and ISSR markers, and investigated responding changes in photosynthetic pigment (chlorophyll a, b, a/b, total chlorophyll and carotenoid) contents and total soluble protein amounts in plant leaves. The main reason for the use of bulbiferous spurs originated clone plants was to increase reliability and acceptability of RAPD and ISSR techniques in DNA fingerprinting. Raised 40 clone plants were divided into five separate groups each with eight individuals and each experimental group was watered with 0 (control), 0 (acid control), 50, 100 and 200 µM AlCl3-containing Hoagland solutions on alternate days for two and a half months. All plant soils except control group were sprayed with 0.2% sulfuric acid following watering days and this contributed acidic characteristic (pH 4.8) to soil structure. Increase in Al concentrations were accompanied by an increase in total soluble protein amounts, a decrease in photosynthetic pigment contents, and with appearance, disappearance and intensity changes at RAPD and ISSR band profiles. Out of tested RAPD1-25 and ISSR1-15 primers, RAPD8, RAPD9, ISSR2 and ISSR7 primers produced reproducible band profiles that were distinguishable between treatment and control groups. Findings showed that RAPD and ISSR fingerprints have been useful biomarkers for investigation of plant genotoxicity, especially in clone plants. Moreover, if these fingerprints are integrated with other physiological parameters they could become more powerful tools in ecotoxicology.


Subject(s)
Aluminum/pharmacology , DNA Fingerprinting/methods , Kalanchoe/drug effects , Kalanchoe/genetics , Aluminum/metabolism , Carotenoids/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Chlorophyll A/genetics , Chlorophyll A/metabolism , DNA, Plant/genetics , Genetic Markers/genetics , Genetic Variation , Kalanchoe/metabolism , Microsatellite Repeats , Plant Leaves/genetics , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique/methods , Reproducibility of Results
4.
Acta Biol Hung ; 63(1): 52-66, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22453800

ABSTRACT

Programmed cell death (PCD) in the tapetum of Lathyrus undulatus L. was analyzed based on light, fluorescence and electron microscopy to characterize its spatial and temporal occurrence. Development and processes of PCD in secretory tapetal cells of Lathyrus undulatus L. were correlated with the sporogenous cells and pollen grains. At early stages of development the tapetal cells appeared similar to pollen mother cells, structurally. Concurrent with meiosis, tapetum expanded both tangentially and radially as vacuoles increased in size. Tapetal cells most fully developed at young microspore stage. However, tapetum underwent substantial changes in cell organization including nucleus morphology monitored by DAPI. The TUNEL staining confirmed the occurrence of intra-nucleosomal DNA cleavage. In addition to nuclear degeneration which is the first hallmark of PCD other diagnostic features were observed at vacuolated microspore stage intensely; such as chromatin condensation at the periphery of the nucleus, nuclear membrane degeneration, chromatin release to the cytoplasm, vacuole collapse according to tonoplast rupture, shrinkage of the cytoplasm, the increase and enlargement of the endoplasmic reticulum cisternae and disruption of the plasma membrane. After vacuole collapse due to possible release of hydrolytic enzymes the cell components degraded. Tapetal cells completely degenerated at bicellular pollen stage.


Subject(s)
Cell Death/physiology , Flowers/ultrastructure , Lathyrus/cytology , Lathyrus/physiology , Animals , Cell Nucleus/ultrastructure , Cytoplasm/ultrastructure , Flowers/physiology , In Situ Nick-End Labeling , Microscopy, Electron, Transmission , Pollen/genetics , Pollen/ultrastructure , Vacuoles/ultrastructure
5.
Acta Biol Hung ; 62(2): 156-70, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21555268

ABSTRACT

To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yildizi) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 µM). Aluminum reduced the root elongation by 39.6% in 150 µM, 44.1% in 300 µM, 50.1% in 450 µM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.


Subject(s)
Aluminum/pharmacology , Plant Roots/drug effects , Stress, Physiological/drug effects , Zea mays/drug effects , Aluminum/toxicity , Calcium/metabolism , Dose-Response Relationship, Drug , Glucans/metabolism , Lignin/metabolism , Lipid Peroxidation/drug effects , Mitosis/drug effects , Plant Roots/cytology , Plant Roots/metabolism , Stress, Physiological/physiology , Zea mays/cytology , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...