Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(21): 8497-8509, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35606053

ABSTRACT

Herein, we have introduced a class of half-sandwich [Ru(η6-p-cymene)(N^O 8-hydroxyquinoline)(PTA)] complexes for brain cancer therapy. Among all the complexes, [RuL3PTA] and [RuL4PTA] exhibited excellent cytotoxicity profiles against T98G, LN229, and U87MG cancer cells. Notably, the antiproliferative activities of the relevant complexes were also supported by neurosphere, DNA intercalation, agarose gel electrophoresis, and time-dependent ROS detection assay studies. Detailed molecular assays were obtained via real-time reverse transcription (RT)-polymerase chain reaction (PCR) experiments. Moreover, the in vivo biodistribution of the [RuL4PTA] complex in different organs and the morphological patterns of zebrafish embryos due to toxic effects have been evaluated.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Carcinoma , Coordination Complexes , Ruthenium , Animals , Antineoplastic Agents/pharmacology , Brain , Cell Line, Tumor , Chemistry, Pharmaceutical , Coordination Complexes/pharmacology , Cymenes , Humans , Oxyquinoline/pharmacology , Ruthenium/pharmacology , Tissue Distribution , Zebrafish
2.
Inorg Chem ; 59(23): 17689-17711, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33210921

ABSTRACT

Due to several negative issues, market available drugs have been gradually losing their importance in the treatment of cancer. With a view to discover suitable drugs capable of diagnosing as well as inhibiting the growth of cancer cells, we have aspired to develop a group of theranostic metal complexes which will be (i) target specific, (ii) cytoselective, thus rendering the normal cell unaffected, (iii) water-soluble, (iv) cancer cell permeable, and (v) luminescent, being beneficial for healing the cancer eternally. Therefore, to reach our goal, we have prepared novel Ru(II)- and Ir(III)-based bimetallic and hetero bimetallic scaffolds using click-derived pyridinyltriazolylmethylquinoxaline ligands followed by metal coordination. Most of the compounds have displayed significant cytoselectivity against colorectal adenocarcinoma (Caco-2) and epithiloid cervical carcinoma (HeLa) cells with respect to normal human embryonic kidney cells (HEK-293) compared to cisplatin [cis-diamminedichloroplatinum(II)] along with excellent binding efficacy with DNA as well as serum albumin. Complex [(η6-p-cymene)(η5-Cp*)RuIIIrIIICl2(K2-N,N-L)](PF6)2 [RuIrL] exhibited the best cytoselectivity against all the human cancer cells and was identified as the most significant cancer theranostic agent in terms of potency, selectivity, and fluorescence quantum yield. Investigation of the localization of complex [Ir2L] and [RuIrL] in the more aggressive colorectal adenocarcinoma cell HT-29 indicates that mitochondria are the key cellular target for destroying cancer cells. Mitochondrial dysfunction and G2/M phase cell cycle arrest in HT-29 cell were found to be involved in the apoptotic cell death pathway induced by the test complexes [Ir2L] and [RuIrL]. These results validate the concept that these types of complexes will be reasonably able to exert great potential for tumor diagnosis as well as therapy in the near future.


Subject(s)
Antineoplastic Agents/pharmacology , Luminescent Agents/pharmacology , Mitochondria/drug effects , Theranostic Nanomedicine , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Iridium/chemistry , Iridium/pharmacology , Luminescent Agents/chemical synthesis , Luminescent Agents/chemistry , Mitochondria/metabolism , Molecular Structure , Pyridines/chemistry , Pyridines/pharmacology , Quinoxalines/chemistry , Quinoxalines/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Structure-Activity Relationship
3.
Photochem Photobiol Sci ; 19(10): 1402-1409, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32914816

ABSTRACT

Aggregation-induced emission (AIE) properties of an easy-to-prepare and structurally planar Schiff base derivative of the vitamin B6 cofactor pyridoxal (L) were investigated in DMSO-H2O mixed solvents. Compound L showed weak fluorescence (λem = 425 nm) in pure DMSO, but increasing the fraction of water in DMSO resulted in a significant fluorescence enhancement at 575 nm due to the restriction of intramolecular rotation (RIR) of L upon aggregation. SEM analyses revealed the formation of hairy micelle-like or needle-shaped self-assemblies/aggregates of L. The DFT calculations were performed to examine the tendency of L to form self-aggregates, and the results indicate the formation of several intramolecular non-covalent interactions that energetically favored the self-aggregation of L. The pH sensing study revealed that the red-emission of aggregates of L between pH 5.9 and 9.0 turned into green emission at the basic pH with the estimated pKa values of 9.39 and 10.22. Further, the aggregates of L were applied for the visualization of latent fingerprints (LFPs) over a non-porous glass slide.


Subject(s)
Pyridoxal/chemistry , Vitamin B 6/chemistry , Density Functional Theory , Dimethyl Sulfoxide/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Particle Size , Schiff Bases/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...