Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 188, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168025

ABSTRACT

Spintronics in halide perovskites has drawn significant attention in recent years, due to their highly tunable spin-orbit fields and intriguing interplay with lattice symmetry. Here, we perform first-principles calculations to determine the spin relaxation time (T1) and ensemble spin dephasing time ([Formula: see text]) in a prototype halide perovskite, CsPbBr3. To accurately capture spin dephasing in external magnetic fields we determine the Landé g-factor from first principles and take it into account in our calculations. These allow us to predict intrinsic spin lifetimes as an upper bound for experiments, identify the dominant spin relaxation pathways, and evaluate the dependence on temperature, external fields, carrier density, and impurities. We find that the Fröhlich interaction that dominates carrier relaxation contributes negligibly to spin relaxation, consistent with the spin-conserving nature of this interaction. Our theoretical approach may lead to new strategies to optimize spin and carrier transport properties.

2.
Angew Chem Int Ed Engl ; 55(16): 5071-5, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26990250

ABSTRACT

The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non-radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd(1-x)Zn(x)Se(1-y)S(y)/ZnS core/graded shell-shell QDs with suppressed re-absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re-absorption and a constrained Stokes shift, the as-synthesized CdSe/Cd(1-x)Zn(x)Se(1-y)S(y)/ZnS QDs exhibited the suppressed re-absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift-engineered QDs with suppressed re-absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity-time symmetry materials and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...