Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951488

ABSTRACT

Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin-orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature. The molecular dopant, benzyl viologen (BV), is shown to compensate adventitious p-type impurities and can lead to a tunable Fermi level above the conduction band minimum and increased conductivity in intrinsic samples. The doping-induced carrier concentration is monitored by the observation of free-carrier absorption and intraband optical transitions in the infrared spectral range. These optical measurements allow for an estimation of the Rashba splitting energy ER ≈38 ± 4 meV. Photoinduced quantum beating measurements demonstrate that the excess electron density reduces the electron spin g-factor by ca. 6%. This work demonstrates controllable carrier concentrations in hybrid organic/inorganic perovskites and yields potential for room temperature spin control through the Rashba effect.

2.
Nano Lett ; 24(9): 2705-2711, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38240732

ABSTRACT

Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.

3.
J Chem Phys ; 159(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37675847

ABSTRACT

Chiral materials exhibit many interesting physical properties including circular dichroism, circularly polarized photoluminescence, and spin selectivity. Since its discovery, chirality-induced spin selectivity (CISS) has been demonstrated in many chiral material systems, which indicates promising applications in spintronic devices. Thus, searching for compounds that possess both sizable chirality and excellent spin transport properties is in order. Hybrid organic-inorganic perovskites have attracted intensive research interest due to their long carrier lifetime, high carrier mobility, chemically tunable electronic properties, and long spin lifetime, which make this emerging class of semiconductors promising candidate for spintronics. Moreover, hybrid perovskites integrate inorganic octahedral framework and organic ligands, which may introduce chirality into the materials, especially in quasi-two-dimensional structures. Recently, CISS has been observed in 2D chiral hybrid perovskites, showing the spin filtering effect. Studies of CISS in chiral hybrid perovskites not only help deepen our understanding of CISS mechanism but also shed new light on designing novel spintronic devices. In this review, we summarize the state-of-the-art studies of CISS effect in 2D chiral hybrid organic-inorganic perovskites system. We also discuss the remaining challenges and research opportunities of employing CISS in next-generation spintronic devices.

4.
Article in English | MEDLINE | ID: mdl-36749918

ABSTRACT

Understanding the stability and degradation of organic light-emitting diodes (OLEDs) under working conditions is a significant area of research for developing more effective OLEDs and further improving their performance. However, studies of degradation processes by in situ noninvasive methods have not been adequately developed. In this work, tris-(8-hydroxyquinolino) aluminum (Alq3)-based OLED degradation processes have been analyzed through the investigation of the device dispersive magneto-electroluminescence (MEL(B)) response measured at room temperature. By studying the change in the MEL(B) response during the device degradation under different external stimuli, such as exposing the device to the atmosphere and prolonged illumination by a strong visible light source, we have gained insight into the microscopic spin-dependent phenomena that control the recombination of e-h polaron pairs in the device. We found that the device degradation leads to a shorter e-h polaron lifetime, smaller dispersive parameter, and broader lifetime distribution function that shows increased disorder in the active layer. This study could offer a potential tool that may be beneficial for assessing the degradation of OLED devices based on various active layers.

5.
Nat Rev Chem ; 6(7): 470-485, 2022 Jul.
Article in English | MEDLINE | ID: mdl-37117313

ABSTRACT

The relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components - termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies. Semiconductors are non-magnetic extended systems that allow for the control of charge transport, as well as the absorption and emission of light. Therefore, introducing chirality into semiconductors would enable control over charge, spin and light without magnetic components. Chiral metal halide semiconductors (MHSs) are hybrid organic-inorganic materials that combine the properties of small chiral organic molecules with those of extended inorganic semiconductors. Reports of CISS in chiral MHSs have resulted in breakthroughs in our understanding of CISS and in the realization of spin-dependent optoelectronic properties. This Review examines the fundamentals and applications of CISS in chiral MHSs. The structural diversity and key structure-property relationships, such as chiral transfer from the organic to the inorganic components, are summarized. With a focus on the underlying chemistry and physics, the control of spin, light and charge in these semiconductors is explored.

6.
Science ; 371(6534): 1129-1133, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33707260

ABSTRACT

In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts. We used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrate a spin-LED that operates at room temperature without magnetic fields or ferromagnetic contacts. The CISS layer consists of oriented, self-assembled small chiral molecules within a layered organic-inorganic metal-halide hybrid semiconductor framework. The spin-LED achieves ±2.6% circularly polarized electroluminescence at room temperature.

7.
ACS Appl Mater Interfaces ; 12(47): 52538-52548, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33179501

ABSTRACT

Solution-processable two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) quantum wells naturally self-assemble through weak van der Waals forces. In this study, we investigate the structural and optoelectronic properties of 2D-layered butylammonium (C4H9NH3+, BA+) methylammonium (CH3NH3+, MA) lead iodide, (BA)2(MA)n-1PbnI3n+1 quantum wells with varying n from 1 to 4. Through conventional structural characterization, (BA)2(MA)n-1PbnI3n+1 thin films showcase high-quality phase (n) purity. However, while investigating the optoelectronic properties, it is clear that these van der Waals heterostructures consist of multiple quantum well thicknesses coexisting within a single thin film. We utilized electroabsorption spectroscopy and Liptay theory to develop an analytical tool capable of deconvoluting the excitonic features that arise from different quantum well thicknesses (n) in (BA)2(MA)n-1PbnI3n+1 thin films. To obtain a quantitative assessment of exciton heterogeneities within a thin film comprising multiple quantum well structures, exciton resonances quantified by absorption spectroscopy were modeled as Gaussian features to yield various theory-generated electroabsorption spectra, which were then fit to our experimental electroabsorption features. In addition to identifying the quantum well heterostructures present within a thin film, this novel analytical tool provides powerful insights into the exact exciton composition and can be utilized to analyze the optoelectronic properties of many other mixed-phase quantum well heterostructures beyond those formed by OIHPs. Our findings may help in designing more efficient and reproducible light-emitting diodes based on 2D mixed-phase metal-organic multiple quantum wells.

8.
Nanoscale ; 12(35): 18067-18078, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32820791

ABSTRACT

We demonstrate theoretically that non-chiral perovskite layers can exhibit circular dichroism (CD) in the absence of a magnetic field and without chiral activation by chiral molecules. The effect is shown to be due to splitting of helical excitonic states which can form in structures of orthorhombic or lower symmetry that exhibit Rashba spin effects. The selective coupling of these helical exciton states to helical light is shown to give rise to circular dichroism. Polarization dependent absorption is shown to occur due to the combined effect of Rashba splitting, in-plane symmetry breaking, and the effect of the exciton momentum on its fine structure, which takes the form of Zeeman splitting in an effective magnetic field. This phenomenon, which can be considered as a manifestation of extrinsic chirality, results in significant CD with an anisotropy factor of up to 30% in orthorhombic perovskite layers under off-normal, top illumination conditions, raising the possibility of its observation in non-chiral perovskite structures.

9.
Sci Adv ; 5(12): eaay0571, 2019 12.
Article in English | MEDLINE | ID: mdl-31840072

ABSTRACT

Chiral-induced spin selectivity (CISS) occurs when the chirality of the transporting medium selects one of the two spin ½ states to transport through the media while blocking the other. Monolayers of chiral organic molecules demonstrate CISS but are limited in their efficiency and utility by the requirement of a monolayer to preserve the spin selectivity. We demonstrate CISS in a system that integrates an inorganic framework with a chiral organic sublattice inducing chirality to the hybrid system. Using magnetic conductive-probe atomic force microscopy, we find that oriented chiral 2D-layered Pb-iodide organic/inorganic hybrid perovskite systems exhibit CISS. Electron transport through the perovskite films depends on the magnetization of the probe tip and the handedness of the chiral molecule. The films achieve a highest spin-polarization transport of up to 86%. Magnetoresistance studies in modified spin-valve devices having only one ferromagnet electrode confirm the occurrence of spin-dependent charge transport through the organic/inorganic layers.

10.
Adv Mater ; 31(41): e1904059, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31453657

ABSTRACT

The hybrid organic-inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs.

11.
Nano Lett ; 18(12): 8047-8053, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30406664

ABSTRACT

Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g. the quantum Hall (QH) effect of massless Dirac fermions in topological surface states (TSS). However, to realize more advanced devices and phenomena, there is a need for a platform to tune the TSS or modify them e.g. gap them by proximity with magnetic insulators, in a clean manner. Here we introduce van der Waals (vdW) heterostructures in the form of topological insulator/insulator/graphite to effectively control chemical potential of the TSS. Two types of gate dielectrics, normal insulator hexagonal boron nitride (hBN) and ferromagnetic insulator Cr2Ge2Te6 (CGT) are utilized to tune charge density of TSS in the quaternary TI BiSbTeSe2. hBN/graphite gating in the QH regime shows improved quantization of TSS by suppression of magnetoconductivity of massless Dirac fermions. CGT/graphite gating of massive Dirac fermions in the QH regime yields half-quantized Hall conductance steps and a measure of the Dirac gap. Our work shows the promise of the vdW platform in creating advanced high-quality TI-based devices.

12.
Sci Adv ; 4(5): eaar7353, 2018 05.
Article in English | MEDLINE | ID: mdl-29736416

ABSTRACT

The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices.

13.
J Phys Chem Lett ; 8(18): 4557-4564, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28880565

ABSTRACT

Two-dimensional (2D) organic-inorganic hybrid perovskite multiple quantum wells that consist of multilayers of alternate organic and inorganic layers exhibit large exciton binding energies of order of 0.3 eV due to the dielectric confinement between the inorganic and organic layers. We have investigated the exciton characteristics of 2D butylammonium lead iodide, (C4H9NH3)2PbI4 using photoluminescence and UV-vis absorption in the temperature range of 10 K to 300 K, and electroabsorption spectroscopy. The evolution of an additional absorption/emission at low temperature indicates that this compound undergoes a phase transition at ≈250 K. We found that the electroabsorption spectrum of each structural phase contains contributions from both quantum confined exciton Stark effect and Franz-Keldysh oscillation of the continuum band, from which we could determine more accurately the 1s exciton, continuum band edge, and the exciton binding energy.

14.
Sci Adv ; 3(7): e1700704, 2017 07.
Article in English | MEDLINE | ID: mdl-28782030

ABSTRACT

Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calculations to study the primary (excitons) and long-lived (free carriers) photoexcitations in thin films of 2D perovskite, namely, (C6H5C2H4NH3)2PbI4. The density functional theory calculation shows the occurrence of Rashba splitting in the plane perpendicular to the 2D barrier. From the electroabsorption spectrum and photoinduced absorption spectra from excitons and free carriers, we obtain a giant Rashba splitting in this compound, with energy splitting of (40 ± 5) meV and Rashba parameter of (1.6 ± 0.1) eV·Å, which are among the highest Rashba splitting size parameters reported so far. This finding shows that 2D hybrid perovskites have great promise for potential applications in spintronics.

15.
J Phys Chem Lett ; 8(7): 1429-1435, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28299942

ABSTRACT

Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH3NH3PbI3-based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

16.
ACS Appl Mater Interfaces ; 8(51): 35447-35453, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27966864

ABSTRACT

We studied steady state and transient photocurrents in thin film and single-crystal devices of MAPbBr3, a prototype organic-inorganic hybrid perovskite. We found that the devices' capacitance is abnormally large, which originates from accumulation of large densities of Pb2+ and Br- in the active perovskite layer. Under applied bias, these ions are driven toward the opposite electrodes leading to space-charge fields close to the metal/perovskite interfaces. The ion accumulation, in turn, causes photocurrent reversal polarity that depends on the history of the applied bias and excitation photon energy with respect to the optical gap. Furthermore, the large capacitive response dominates the transient photocurrent and, therefore, obscures the weaker contribution from the photocarriers' drift. We show that these properties depend on the ambient conditions in which the measurements are performed. Understanding these phenomena may lead to better control over the stability of perovskite photodetectors for visible light.

17.
Phys Rev Lett ; 115(26): 267401, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26765027

ABSTRACT

We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

18.
Materials (Basel) ; 6(3): 897-910, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-28809347

ABSTRACT

We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) (RR-P3HT) (donors-D) and fullerene (PCBM) (acceptor-A) in an unprecedented broad spectral range of 0.25 to 2.5 eV. In D-A blends with maximum domain separation, such as RR-P3HT/PCBM, with (1.2:1) weight ratio having solar cell power conversion efficiency of ~4%, we found that although the intrachain excitons in the polymer domains decay within ~10 ps, no charge polarons are generated at their expense up to ~1 ns. Instead, there is a build-up of charge-transfer (CT) excitons at the D-A interfaces having the same kinetics as the exciton decay. The CT excitons dissociate into separate polarons in the D and A domains at a later time (>1 ns). This "two-step" charge photogeneration process may be typical in organic bulk heterojunction cells. We also report the effect of adding spin 1/2 radicals, Galvinoxyl on the ultrafast photoexcitation dynamics in annealed films of RR-P3HT/PCBM blend. The addition of Galvinoxyl radicals to the blend reduces the geminate recombination rate of photogenerated CT excitons. In addition, the photoexcitation dynamics in a new D-A blend of RR-P3HT/Indene C60 trisadduct (ICTA) has been studied and compared with the dynamics in RR-P3HT/PCBM.

SELECTION OF CITATIONS
SEARCH DETAIL
...