Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(56): 7216-7219, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38910581

ABSTRACT

Facile transmetalation is observed from a d8 metal, platinum(II), to indium and gallium leading to the extrusion of methylated gallate and indate anions representing a rare case of the "reverse" transmetalation from a d8 metal to a main group metal. The Pt-Ga and Pt-In bonding in the bimetallic complexes was analyzed through bosonic and fermionic potentials, QTAIM, and NBO.

2.
Chemistry ; 30(8): e202303789, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37984073

ABSTRACT

We describe a family of cationic methylstannylene and chloro- and azidosilylene organoplatinum(II) complexes supported by a neutral, binucleating ligand. Methylstannylenes MeSn:+ are stabilized by coordination to PtII and are formed by facile Me group transfer from dimethyl or monomethyl PtII complexes, in the latter case triggered by concomitant B-H, Si-H, and H2 bond activation that involves hydride transfer from Sn to Pt. A cationic chlorosilylene complex was obtained by formal HCl elimination and Cl- removal from HSiCl3 under ambient conditions. The computational studies show that stabilization of cationic methylstannylenes and cationic silylenes is achieved through weak coordination to a neutral N-donor ligand binding pocket. The analysis of the electronic potentials, as well as the Laplacian of electron density, also reveals the differences in the character of Pt-Si vs. Pt-Sn bonding. We demonstrate the importance of a ligand-supported binuclear Pt/tetrel core and weak coordination to facilitate access to tetrylium-ylidene Pt complexes, and a transmetalation approach to the synthesis of MeSnII :+ derivatives.

3.
Chem Sci ; 10(6): 1879-1884, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30842857

ABSTRACT

This work demonstrates the first-ever completely metal-free approach to the capture of CO2 from air followed by reduction to methoxyborane (which produces methanol on hydrolysis) or sodium formate (which produces formic acid on hydrolysis) under ambient conditions. This was accomplished using an abnormal N-heterocyclic carbene (aNHC)-borane adduct. The intermediate involved in CO2 capture (aNHC-H, HCOO, B(OH)3) was structurally characterized by single-crystal X-ray diffraction. Interestingly, the captured CO2 can be released by heating the intermediate, or by passing this compound through an ion-exchange resin. The capture of CO2 from air can even proceed in the solid state via the formation of a bicarbonate complex (aNHC-H, HCO3, B(OH)3), which was also structurally characterized. A detailed mechanism for this process is proposed based on tandem density functional theory calculations and experiments.

4.
J Org Chem ; 84(1): 289-299, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30507198

ABSTRACT

Main group metal based catalysis has been considered to be a cost-effective alternative way to the transition metal based catalysis, due to the high abundance of main group metals in the Earth's crust. Among the main group metals, aluminum is the most abundant (7-8%) in the Earth's crust, making the development of aluminum based catalysts very attractive. So far, aluminum based compounds have been popularly used as Lewis acids in a variety of organic reactions, but chemical transformation demanding a redox based process has never utilized an Al(III) complex as a catalyst. Herein, we tuned the redox noninnocence behavior of a phenalenyl ligand by coupling with Al(III) ion, which subsequently can store the electron upon reduction with K to carry out direct C-H arylation of heteroarenes/mesitylene at ambient temperature. A mechanistic investigation revealed that a three-electron reduced phenalenyl based triradical aluminum(III) complex plays the key role in such catalysis. The electronic structure of the catalytically active triradical species has been probed using EPR spectroscopy, magnetic susceptibility measurements, and electronic structure calculations using a DFT method.

5.
J Org Chem ; 83(16): 9403-9411, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30015486

ABSTRACT

This work describes the dehydrogenative coupling of heteroarenes using a dimeric halo-bridged palladium(II) catalyst bearing an abnormal NHC ( aNHC) backbone. The catalyst can successfully activate the C-H bond of a wide range of heteroarenes, which include benzothiazole, benzoxazole, thiophene, furan, and N-methylbenzimidazole. Further, it exhibited good activity for heteroarenes bearing various functional groups such as CN, CHO, Me, OMe, OAc, and Cl. Additionally, we isolated the active catalyst by performing stoichiometric reaction and characterized it as the acetato-bridged dimer of ( aNHC)PdOAc by single-crystal X-ray study.

6.
Angew Chem Int Ed Engl ; 55(48): 15147-15151, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27860175

ABSTRACT

An abnormal N-heterocyclic carbene (aNHC) based homogeneous catalyst has been used for the reduction of carbon dioxide to methoxyborane in the presence of a range of hydroboranes under ambient conditions and resulted in the highest turnover number of 6000. A catalytically active reaction intermediate, [aNHC-H⋅9BBN(OCOH)2 ] was structurally characterized and authenticated by NMR spectroscopy. A detailed mechanistic cycle of this catalytic process via borondiformate formation has been proposed from tandem experimental and computational experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...