Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900009

ABSTRACT

PURPOSE: The detection of where an organ starts and where it ends is achievable and, since this information can be delivered in real time, it could be quite important for several reasons. For one, by having the practical knowledge of the Wireless Endoscopic Capsule (WEC) transition through an organ's domain, we are able to align and control the endoscopic operation with any other possible protocol, i.e., delivering some form of treatment on the spot. Another is having greater anatomical topography information per session, therefore treating the individual in detail (not "in general"). Even the fact that by gathering more accurate information for a patient by merely implementing clever software procedures is a task worth exploiting, since the problems we have to overcome in real-time processing of the capsule findings (i.e., wireless transfer of images to another unit that will apply the necessary real time computations) are still challenging. This study proposes a computer-aided detection (CAD) tool, a CNN algorithm deployed to run on field programmable gate array (FPGA), able to automatically track the capsule transitions through the entrance (gate) of esophagus, stomach, small intestine and colon, in real time. The input data are the wireless transmitted image shots of the capsule's camera (while the endoscopy capsule is operating). METHODS: We developed and evaluated three distinct multiclass classification CNNs, trained on the same dataset of total 5520 images extracted by 99 capsule videos (total 1380 frames from each organ of interest). The proposed CNNs differ in size and number of convolution filters. The confusion matrix is obtained by training each classifier and evaluating the trained model on an independent test dataset comprising 496 images extracted by 39 capsule videos, 124 from each GI organ. The test dataset was further evaluated by one endoscopist, and his findings were compared with CNN-based results. The statistically significant of predictions between the four classes of each model and the comparison between the three distinct models is evaluated by calculating the p-values and chi-square test for multi class. The comparison between the three models is carried out by calculating the macro average F1 score and Mattheus correlation coefficient (MCC). The quality of the best CNN model is estimated by calculations of sensitivity and specificity. RESULTS: Our experimental results of independent validation demonstrate that the best of our developed models addressed this topological problem by exhibiting an overall sensitivity (96.55%) and specificity of (94.73%) in the esophagus, (81.08% sensitivity and 96.55% specificity) in the stomach, (89.65% sensitivity and 97.89% specificity) in the small intestine and (100% sensitivity and 98.94% specificity) in the colon. The average macro accuracy is 95.56%, the average macro sensitivity is 91.82%.

2.
Brain Sci ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36831891

ABSTRACT

PURPOSE: Brain tumors are diagnosed and classified manually and noninvasively by radiologists using Magnetic Resonance Imaging (MRI) data. The risk of misdiagnosis may exist due to human factors such as lack of time, fatigue, and relatively low experience. Deep learning methods have become increasingly important in MRI classification. To improve diagnostic accuracy, researchers emphasize the need to develop Computer-Aided Diagnosis (CAD) computational diagnostics based on artificial intelligence (AI) systems by using deep learning methods such as convolutional neural networks (CNN) and improving the performance of CNN by combining it with other data analysis tools such as wavelet transform. In this study, a novel diagnostic framework based on CNN and DWT data analysis is developed for the diagnosis of glioma tumors in the brain, among other tumors and other diseases, with T2-SWI MRI scans. It is a binary CNN classifier that treats the disease "glioma tumor" as positive and the other pathologies as negative, resulting in a very unbalanced binary problem. The study includes a comparative analysis of a CNN trained with wavelet transform data of MRIs instead of their pixel intensity values in order to demonstrate the increased performance of the CNN and DWT analysis in diagnosing brain gliomas. The results of the proposed CNN architecture are also compared with a deep CNN pre-trained on VGG16 transfer learning network and with the SVM machine learning method using DWT knowledge. METHODS: To improve the accuracy of the CNN classifier, the proposed CNN model uses as knowledge the spatial and temporal features extracted by converting the original MRI images to the frequency domain by performing Discrete Wavelet Transformation (DWT), instead of the traditionally used original scans in the form of pixel intensities. Moreover, no pre-processing was applied to the original images. The images used are MRIs of type T2-SWI sequences parallel to the axial plane. Firstly, a compression step is applied for each MRI scan applying DWT up to three levels of decomposition. These data are used to train a 2D CNN in order to classify the scans as showing glioma or not. The proposed CNN model is trained on MRI slices originated from 382 various male and female adult patients, showing healthy and pathological images from a selection of diseases (showing glioma, meningioma, pituitary, necrosis, edema, non-enchasing tumor, hemorrhagic foci, edema, ischemic changes, cystic areas, etc.). The images are provided by the database of the Medical Image Computing and Computer-Assisted Intervention (MICCAI) and the Ischemic Stroke Lesion Segmentation (ISLES) challenges on Brain Tumor Segmentation (BraTS) challenges 2016 and 2017, as well as by the numerous records kept in the public general hospital of Chania, Crete, "Saint George". RESULTS: The proposed frameworks are experimentally evaluated by examining MRI slices originating from 190 different patients (not included in the training set), of which 56% are showing gliomas by the longest two axes less than 2 cm and 44% are showing other pathological effects or healthy cases. Results show convincing performance when using as information the spatial and temporal features extracted by the original scans. With the proposed CNN model and with data in DWT format, we achieved the following statistic percentages: accuracy 0.97, sensitivity (recall) 1, specificity 0.93, precision 0.95, FNR 0, and FPR 0.07. These numbers are higher for this data format (respectively: accuracy by 6% higher, recall by 11%, specificity by 7%, precision by 5%, FNR by 0.1%, and FPR is the same) than it would be, had we used as input data the intensity values of the MRIs (instead of the DWT analysis of the MRIs). Additionally, our study showed that when our CNN takes into account the TL of the existing network VGG, the performance values are lower, as follows: accuracy 0.87, sensitivity (recall) 0.91, specificity 0.84, precision 0.86, FNR of 0.08, and FPR 0.14. CONCLUSIONS: The experimental results show the outperformance of the CNN, which is not based on transfer learning, but is using as information the MRI brain scans decomposed into DWT information instead of the pixel intensity of the original scans. The results are promising for the proposed CNN based on DWT knowledge to serve for binary diagnosis of glioma tumors among other tumors and diseases. Moreover, the SVM learning model using DWT data analysis performs with higher accuracy and sensitivity than using pixel values.

3.
Int J Radiat Biol ; 97(3): 421-430, 2021.
Article in English | MEDLINE | ID: mdl-33264581

ABSTRACT

PURPOSE: The effects of the electromagnetic (EM) radiation emitted by a mobile phone on the central auditory system of rabbits are investigated in this paper. Auditory brainstem response (ABR) measurements were performed before and after short-term exposure to EM radiation. MATERIALS AND METHODS: Excitation was provided by a GSM-1800 emitter placed in contact with the (randomly selected) ear of the anesthetized rabbit/subject. The latency of waves I, II, III, IV, V and the interpeak latencies I-III, I-V, III-V were recorded, for both ears, before (baseline recordings) and after 1, 15, 30, 45 and 60 minutes of exposure to the EM radiation. The repeated measures one-way analysis of variance (ANOVA) followed by the post hoc Tukey test for pairwise comparisons was performed in order to decide about the significance of the results. RESULTS: The statistical tests indicated that, as regards the ear ipsilateral to the radiating module, the mean latencies of waves I, II, III, IV, V, I-III, I-IV after 60 min exposure, the mean latencies of waves I, III, IV, V, I-III, I-IV after 45 min exposure and the mean latencies of waves I, III, IV, V, I-IV after 30 min exposure, were significantly prolonged compared to the corresponding baseline values. Statistically significant differences were also found for certain peak and interpeak latencies for 60 min exposure as compared with the corresponding results for 1 min and 15 min exposure. No statistically significant delay was observed for the latencies before and after the exposure, for the ear contralateral to the radiation source. CONCLUSIONS: Although we found that more than 30 min exposure to GSM-1800 radiation resulted in prolongation of certain ABR components of rabbits, further investigation may be needed into the potential adverse effects on the auditory pathways.


Subject(s)
Electromagnetic Fields/adverse effects , Evoked Potentials, Auditory, Brain Stem/radiation effects , Animals , Rabbits , Reaction Time/radiation effects
4.
Audiol Neurootol ; 16(4): 270-6, 2011.
Article in English | MEDLINE | ID: mdl-21079392

ABSTRACT

The objective of the present study was to investigate the possible electrophysiological time-related changes in auditory pathway during mobile phone electromagnetic field exposure. Thirty healthy rabbits were enrolled in an experimental study of exposure to GSM-900 radiation for 60 min and auditory brainstem responses (ABRs) were recorded at regular time-intervals during exposure. The study subjects were radiated via an adjustable power and frequency radio transmitter for GSM-900 mobile phone emission simulation, designed and manufactured according to the needs of the experiment. The mean absolute latency of waves III-V showed a statistically significant delay (p < 0.05) after 60, 45 and 15 min of exposure to electromagnetic radiation of 900 MHz, respectively. Interwave latency I-III was found to be prolonged after 60 min of radiation exposure in correspondence to wave III absolute latency delay. Interwave latencies I-V and III-V were found with a statistically significant delay (p < 0.05) after 30 min of radiation. No statistically significant delay was found for the same ABR parameters in recordings from the ear contralateral to the radiation source at 60 min radiation exposure compared with baseline ABR. The ABR measurements returned to baseline recordings 24 h after the exposure to electromagnetic radiation of 900 MHz. The prolongation of interval latencies I-V and III-V indicates that exposure to electromagnetic fields emitted by mobile phone can affect the normal electrophysiological activity of the auditory system, and these findings fit the pattern of general responses to a stressor.


Subject(s)
Electromagnetic Fields , Evoked Potentials, Auditory, Brain Stem/radiation effects , Animals , Cell Phone , Electrophysiology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...