Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 15(4): 444-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26828315

ABSTRACT

Revealing the mechanisms of electronic transport through metal-molecule interfaces is of central importance for a variety of molecule-based devices. A key method for understanding these mechanisms is based on the study of conductance versus molecule length in molecular junctions. However, previous works focused on transport governed either by coherent tunnelling or hopping, both at low conductance. Here, we study the upper limit of conductance across metal-molecule-metal interfaces. Using highly conducting single-molecule junctions based on oligoacenes with increasing length, we find that the conductance saturates at an upper limit where it is independent of molecule length. With the aid of two prototype systems, in which the molecules are contacted by either Ag or Pt electrodes, we find two different possible origins for conductance saturation. The results are explained by an intuitive model, backed by ab initio calculations. Our findings shed light on the mechanisms that constrain the conductance of metal-molecule interfaces at the high-transmission limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...