Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825750

ABSTRACT

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

2.
J Neurochem ; 168(5): 910-954, 2024 May.
Article in English | MEDLINE | ID: mdl-38183680

ABSTRACT

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Subject(s)
Brain , Energy Metabolism , Energy Metabolism/physiology , Brain/metabolism , Humans , Animals
3.
Neurobiol Dis ; 182: 106132, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37094775

ABSTRACT

Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.


Subject(s)
Adrenergic Agents , Alzheimer Disease , Humans , Astrocytes/metabolism , Lipid Metabolism , Norepinephrine/metabolism , Alzheimer Disease/metabolism , Locus Coeruleus/metabolism , Glycolysis/physiology
4.
Cells ; 11(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35326460

ABSTRACT

G-protein-coupled receptors (GPCRs) represent a family with over 800 members in humans, and one-third of these are targets for approved drugs. A large number of GPCRs have unknown physiologic roles. Here, we investigated GPR27, an orphan GPCR belonging to the family of super conserved receptor expressed in the brain, with unknown functions. Cytosolic levels of L-lactate ([lactate]i), the end product of aerobic glycolysis, were measured with the Laconic fluorescence resonance energy transfer nanosensor. In single 3T3 wild-type (WT) embryonic cells, the application of 8535 (1 µM), a surrogate agonist known to activate GPR27, resulted in an increase in [lactate]i. Similarly, an increase was recorded in primary rat astrocytes, a type of neuroglial cell abundant in the brain, which contain glycogen and express enzymes of aerobic glycolysis. In CRISPR-Cas9 GPR27 knocked out 3T3 cells, the 8535-induced increase in [lactate]i was reduced compared with WT controls. Transfection of the GPR27-carrying plasmid into the 3T3KOGPR27 cells rescued the 8535-induced increase in [lactate]i. These results indicate that stimulation of GPR27 enhances aerobic glycolysis and L-lactate production in 3T3 cells and astrocytes. Interestingly, in the absence of GPR27 in 3T3 cells, resting [lactate]i was increased in comparison with controls, further supporting the view that GPR27 regulates L-lactate homeostasis.


Subject(s)
Astrocytes , Lactic Acid , 3T3 Cells , Animals , Astrocytes/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Mice , Rats , Receptors, G-Protein-Coupled/metabolism
5.
Front Physiol ; 12: 735532, 2021.
Article in English | MEDLINE | ID: mdl-34658920

ABSTRACT

Astrocytes, heterogeneous neuroglial cells, contribute to metabolic homeostasis in the brain by providing energy substrates to neurons. In contrast to predominantly oxidative neurons, astrocytes are considered primarily as glycolytic cells. They take up glucose from the circulation and in the process of aerobic glycolysis (despite the normal oxygen levels) produce L-lactate, which is then released into the extracellular space via lactate transporters and possibly channels. Astroglial L-lactate can enter neurons, where it is used as a metabolic substrate, or exit the brain via the circulation. Recently, L-lactate has also been considered to be a signaling molecule in the brain, but the mechanisms of L-lactate signaling and how it contributes to the brain function remain to be fully elucidated. Here, we provide an overview of L-lactate signaling mechanisms in the brain and present novel insights into the mechanisms of L-lactate signaling via G-protein coupled receptors (GPCRs) with the focus on astrocytes. We discuss how increased extracellular L-lactate upregulates cAMP production in astrocytes, most likely viaL-lactate-sensitive Gs-protein coupled GPCRs. This activates aerobic glycolysis, enhancing L-lactate production and accumulation of lipid droplets, suggesting that L-lactate augments its own production in astrocytes (i.e., metabolic excitability) to provide more L-lactate for neurons and that astrocytes in conditions of increased extracellular L-lactate switch to lipid metabolism.

6.
Glia ; 69(12): 2899-2916, 2021 12.
Article in English | MEDLINE | ID: mdl-34406698

ABSTRACT

The plasticity of astrocytes is fundamental for their principal function, maintaining homeostasis of the central nervous system throughout life, and is associated with diverse exposomal challenges. Here, we used cultured astrocytes to investigate at subcellular level basic cell processes under controlled environmental conditions. We compared astroglial functional and signaling plasticity in standard serum-containing growth medium, a condition mimicking pathologic conditions, and in medium without serum, favoring the acquisition of arborized morphology. Using opto-/electrophysiologic techniques, we examined cell viability, expression of astroglial markers, vesicle dynamics, and cytosolic Ca2+ and cAMP signaling. The results revealed altered vesicle dynamics in arborized astrocytes that was associated with increased resting [Ca2+ ]i and increased subcellular heterogeneity in [Ca2+ ]i , whereas [cAMP]i subcellular dynamics remained stable in both cultures, indicating that cAMP signaling is less prone to plastic remodeling than Ca2+ signaling, possibly also in in vivo contexts.


Subject(s)
Astrocytes , Signal Transduction , Astrocytes/metabolism , Calcium Signaling/physiology , Cells, Cultured
7.
Cell Calcium ; 95: 102368, 2021 05.
Article in English | MEDLINE | ID: mdl-33621899

ABSTRACT

Astroglial aerobic glycolysis, a process during which d-glucose is converted to l-lactate, a brain fuel and signal, is regulated by the plasmalemmal receptors, including adrenergic receptors (ARs) and purinergic receptors (PRs), modulating intracellular Ca2+ and cAMP signals. However, the extent to which the two signals regulate astroglial aerobic glycolysis is poorly understood. By using agonists to stimulate intracellular α1-/ß-AR-mediated Ca2+/cAMP signals, ß-AR-mediated cAMP and P2R-mediated Ca2+ signals and genetically encoded fluorescence resonance energy transfer-based glucose and lactate nanosensors in combination with real-time microscopy, we show that intracellular Ca2+, but not cAMP, initiates a robust increase in the concentration of intracellular free d-glucose ([glc]i) and l-lactate ([lac]i), both depending on extracellular d-glucose, suggesting Ca2+-triggered glucose uptake and aerobic glycolysis in astrocytes. When the glycogen shunt, a process of glycogen remodelling, was inhibited, the α1-/ß-AR-mediated increases in [glc]i and [lac]i were reduced by ∼65 % and ∼30 %, respectively, indicating that at least ∼30 % of the utilization of d-glucose is linked to glycogen remodelling and aerobic glycolysis. Additional activation of ß-AR/cAMP signals aided to α1-/ß-AR-triggered [lac]i increase, whereas the [glc]i increase was unaltered. Taken together, an increase in intracellular Ca2+ is the prime mechanism of augmented aerobic glycolysis in astrocytes, while cAMP has only a moderate role. The results provide novel information on the signals regulating brain metabolism and open new avenues to explore whether astroglial Ca2+ signals are dysregulated and contribute to neuropathologies with impaired brain metabolism.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Glucose/metabolism , Glycolysis/physiology , Animals , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Female , Glycolysis/drug effects , Isoproterenol/pharmacology , Phenylephrine/pharmacology , Rats , Rats, Wistar
8.
Glia ; 69(6): 1540-1562, 2021 06.
Article in English | MEDLINE | ID: mdl-33609060

ABSTRACT

When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.


Subject(s)
Astrocytes , Animals , Drosophila , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Mitochondria , Rats
9.
J Neurosci Res ; 99(4): 1084-1098, 2021 04.
Article in English | MEDLINE | ID: mdl-33491223

ABSTRACT

During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.


Subject(s)
Astrocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Lactic Acid/biosynthesis , Norepinephrine/pharmacology , Animals , Animals, Newborn , Arabinose/pharmacology , Brain/metabolism , Citric Acid Cycle/drug effects , Deoxyglucose/pharmacology , Energy Metabolism , Fluorescence Resonance Energy Transfer , Imino Furanoses/pharmacology , Nitro Compounds/pharmacology , Oxidative Phosphorylation , Primary Cell Culture , Propionates/pharmacology , Rats , Rats, Wistar , Sugar Alcohols/pharmacology , Transfection
10.
Antioxidants (Basel) ; 11(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35052526

ABSTRACT

In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.

11.
Metabolism ; 116: 154463, 2021 03.
Article in English | MEDLINE | ID: mdl-33309713

ABSTRACT

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Subject(s)
Deoxyglucose/pharmacology , Glycolysis/drug effects , Guanine Nucleotide Dissociation Inhibitors/genetics , Intellectual Disability/genetics , Memory Disorders/prevention & control , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Deoxyglucose/therapeutic use , Down-Regulation/drug effects , Glucose/metabolism , Guanine Nucleotide Dissociation Inhibitors/deficiency , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Maze Learning/drug effects , Memory/drug effects , Memory Disorders/genetics , Mice , Mice, Knockout
12.
Sci Rep ; 10(1): 6003, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265469

ABSTRACT

Most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons and non-neuronal cells, including astrocytes, which metabolically support neurons with nutrients. Neuronal metabolism largely depends on the activation of the noradrenergic system releasing noradrenaline. Activation of astroglial adrenergic receptors with noradrenaline triggers cAMP and Ca2+ signaling and augments aerobic glycolysis with production of lactate, an important neuronal energy fuel. Astrocytes with cytoplasmic TDP-43 inclusions can cause motor neuron death, however, whether astroglial metabolism and metabolic support of neurons is altered in astrocytes with TDP-43 inclusions, is unclear. We measured lipid droplet and glucose metabolisms in astrocytes expressing the inclusion-forming C-terminal fragment of TDP-43 or the wild-type TDP-43 using fluorescent dyes or genetically encoded nanosensors. Astrocytes with TDP-43 inclusions exhibited a 3-fold increase in the accumulation of lipid droplets versus astrocytes expressing wild-type TDP-43, indicating altered lipid droplet metabolism. In these cells the noradrenaline-triggered increases in intracellular cAMP and Ca2+ levels were reduced by 35% and 31%, respectively, likely due to the downregulation of ß2-adrenergic receptors. Although noradrenaline triggered a similar increase in intracellular lactate levels in astrocytes with and without TDP-43 inclusions, the probability of activating aerobic glycolysis was facilitated by 1.6-fold in astrocytes with TDP-43 inclusions and lactate MCT1 transporters were downregulated. Thus, while in astrocytes with TDP-43 inclusions noradrenergic signaling is reduced, aerobic glycolysis and lipid droplet accumulation are facilitated, suggesting dysregulated astroglial metabolism and metabolic support of neurons in TDP-43-associated ALS and FTD.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , DNA-Binding Proteins/metabolism , Inclusion Bodies/metabolism , Norepinephrine/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/pathology , Cells, Cultured , Glycolysis , Humans , Inclusion Bodies/pathology , Rats, Wistar , Receptors, Adrenergic/metabolism , Signal Transduction
13.
ACS Pharmacol Transl Sci ; 3(2): 361-370, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32296774

ABSTRACT

G protein-coupled receptors (GPCRs) are intensively studied due to their therapeutic potential as drug targets. Members of this large family of transmembrane receptor proteins mediate signal transduction in diverse cell types and play key roles in human physiology and health. In 2013 the research consortium GLISTEN (COST Action CM1207) was founded with the goal of harnessing the substantial growth in knowledge of GPCR structure and dynamics to push forward the development of molecular modulators of GPCR function. The success of GLISTEN, coupled with new findings and paradigm shifts in the field, led in 2019 to the creation of a related consortium called ERNEST (COST Action CA18133). ERNEST broadens focus to entire signaling cascades, based on emerging ideas of how complexity and specificity in signal transduction are not determined by receptor-ligand interactions alone. A holistic approach that unites the diverse data and perspectives of the research community into a single multidimensional map holds great promise for improved drug design and therapeutic targeting.

14.
Adv Exp Med Biol ; 1175: 93-115, 2019.
Article in English | MEDLINE | ID: mdl-31583585

ABSTRACT

Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.


Subject(s)
Astrocytes/cytology , Central Nervous System/cytology , Exocytosis , Secretory Vesicles/physiology , Humans , Membrane Fusion
15.
Adv Exp Med Biol ; 1175: 45-91, 2019.
Article in English | MEDLINE | ID: mdl-31583584

ABSTRACT

Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.


Subject(s)
Astrocytes/physiology , Brain/physiology , Signal Transduction , Calcium , Homeostasis , Humans , Ion Pumps/physiology , Neuroglia , Receptors, Neurotransmitter/physiology , Sodium
16.
Adv Exp Med Biol ; 1175: 149-179, 2019.
Article in English | MEDLINE | ID: mdl-31583588

ABSTRACT

Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.


Subject(s)
Astrocytes/pathology , Brain/physiopathology , Alexander Disease/physiopathology , Atrophy , Humans , Mental Disorders/physiopathology
17.
Sci Rep ; 9(1): 10957, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358895

ABSTRACT

Ketamine is an antidepressant with rapid therapeutic onset and long-lasting effect, although the underlying mechanism(s) remain unknown. Using FRET-based nanosensors we found that ketamine increases [cAMP]i in astrocytes. Membrane capacitance recordings, however, reveal fundamentally distinct mechanisms of effects of ketamine and [cAMP]i on vesicular secretion: a rise in [cAMP]i facilitated, whereas ketamine inhibited exocytosis. By directly monitoring cholesterol-rich membrane domains with a fluorescently tagged cholesterol-specific membrane binding domain (D4) of toxin perfringolysin O, we demonstrated that ketamine induced cholesterol redistribution in the plasmalemma in astrocytes, but neither in fibroblasts nor in PC 12 cells. This novel mechanism posits that ketamine affects density and distribution of cholesterol in the astrocytic plasmalemma, consequently modulating a host of processes that may contribute to ketamine's rapid antidepressant action.


Subject(s)
Antidepressive Agents/pharmacology , Astrocytes/drug effects , Cholesterol/metabolism , Ketamine/pharmacology , Animals , Antidepressive Agents/therapeutic use , Astrocytes/pathology , Cell Membrane/metabolism , Cyclic AMP/metabolism , Depressive Disorder, Major/drug therapy , Exocytosis/drug effects , Female , Ketamine/therapeutic use , PC12 Cells , Rats , Rats, Wistar
18.
Int J Mol Sci ; 20(4)2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795555

ABSTRACT

As part of the blood-brain-barrier, astrocytes are ideally positioned between cerebral vasculature and neuronal synapses to mediate nutrient uptake from the systemic circulation. In addition, astrocytes have a robust enzymatic capacity of glycolysis, glycogenesis and lipid metabolism, managing nutrient support in the brain parenchyma for neuronal consumption. Here, we review the plasticity of astrocyte energy metabolism under physiologic and pathologic conditions, highlighting age-dependent brain dysfunctions. In astrocytes, glycolysis and glycogenesis are regulated by noradrenaline and insulin, respectively, while mitochondrial ATP production and fatty acid oxidation are influenced by the thyroid hormone. These regulations are essential for maintaining normal brain activities, and impairments of these processes may lead to neurodegeneration and cognitive decline. Metabolic plasticity is also associated with (re)activation of astrocytes, a process associated with pathologic events. It is likely that the recently described neurodegenerative and neuroprotective subpopulations of reactive astrocytes metabolize distinct energy substrates, and that this preference is supposed to explain some of their impacts on pathologic processes. Importantly, physiologic and pathologic properties of astrocytic metabolic plasticity bear translational potential in defining new potential diagnostic biomarkers and novel therapeutic targets to mitigate neurodegeneration and age-related brain dysfunctions.


Subject(s)
Adaptation, Physiological , Aging/metabolism , Astrocytes/metabolism , Brain/metabolism , Energy Metabolism , Animals , Brain/growth & development , Humans
19.
Neurosci Lett ; 689: 5-10, 2019 01 10.
Article in English | MEDLINE | ID: mdl-29908259

ABSTRACT

To maintain a high level of specificity and normal cell function, the cyclic adenosine monophosphate (cAMP) pathway is tightly regulated in space and time. Recent advances in cAMP reporter technology have provided insights into spatio-temporal characteristics of cAMP signalling in individual living cells, including astrocytes. Astrocytes are glial cells in the central nervous system with many homeostatic functions. In contrast to neurons, astrocytes are electrically silent, but, in response to extracellular stimuli through activation of surface receptors, they can increase intracellular levels of secondary messengers, e.g. Ca2+ and cAMP. This enables them to communicate with neighbouring cells, such as neurons and endothelial cells of blood vessels. The dynamics of receptor-mediated Ca2+ signalling in astrocytes has been extensively studied in the past in contrast to cAMP signalling. Here, we present the first insights into the temporal dynamics of cAMP signalling in living astrocytes, which revealed that cAMP signals in astrocytes exhibit tonic dynamics and are slower than Ca2+ signals with phasic dynamics. We debate on the heterogeneity of basal cAMP levels in astrocytes and how hypotonicity-induced astrocyte swelling affects temporal dynamics of cAMP signalling. Understanding the spatio-temporal characteristics of cAMP signalling in astrocytes is of extreme importance because cAMP governs many important cellular processes and any malfunctions may lead to pathology.


Subject(s)
Astrocytes/metabolism , Cyclic AMP/metabolism , Animals , Calcium Signaling , Humans , Neurons/metabolism , Signal Transduction
20.
Front Mol Neurosci ; 11: 148, 2018.
Article in English | MEDLINE | ID: mdl-29867342

ABSTRACT

Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...