Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; : 114390, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950716

ABSTRACT

The current pharmacological management of androgenetic alopecia is inconvenient and requires a discipline that patients find difficult to follow. This reduces compliance with treatment and satisfaction with results. It is important to propose treatment regimens that increase patient compliance and reduce adverse effects. This work describes transdermal delivery of minoxidil partially encapsulated in ß-cyclodextrin and assisted by photoacoustic waves. Photoacoustic waves transiently increase the permeability of the skin and allow for the delivery of encapsulated minoxidil. A minoxidil gel formulation was developed and the transdermal delivery was studied in vitro in the presence and absence of photoacoustic waves. A 5-min stimulus with photoacoustic waves generated by light-to-pressure transducers increases minoxidil transdermal delivery flux by approximately 3-fold. The flux of a 1% minoxidil formulation promoted by photoacoustic waves is similar to the passive flux of a 2% minoxidil commercial formulation. Release of minoxidil from ß-cyclodextrin increases dermal exposure without increasing peak systemic exposure. This promotes hair growth with fewer treatments and reduced adverse effects. In vivo studies using encapsulated minoxidil and photoacoustic waves yielded 86% hair coat recovery (vs. 29% in the control group) and no changes in the blood pressure.

2.
Food Chem ; 459: 140080, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38986205

ABSTRACT

Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.

3.
Biochem Pharmacol ; 225: 116266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710333

ABSTRACT

Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.


Subject(s)
Antineoplastic Agents , Epoxy Compounds , Lung Neoplasms , Prostatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Steroids/pharmacology , Steroids/chemistry , Dose-Response Relationship, Drug
4.
Small ; : e2306045, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009519

ABSTRACT

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.

5.
Pharmaceutics ; 15(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376172

ABSTRACT

Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.

6.
Bioorg Chem ; 138: 106600, 2023 09.
Article in English | MEDLINE | ID: mdl-37209561

ABSTRACT

Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , COVID-19 , Neoplasms , Male , Humans , Guanidine/pharmacology , Guanidine/chemistry , Guanidines/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Neoplasms/drug therapy , Antihypertensive Agents , Antiviral Agents/pharmacology
7.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36986446

ABSTRACT

Skin tissue has a crucial role in protecting the human body from external harmful agents, preventing wounds that frequently demand proper healing approaches. The ethnobotanical knowledge of specific regions with further investigation on their medicinal plants has been paramount to create new and effective therapeutical agents, including for dermatological purposes. This review attempts, for the first time, to investigate the traditional applications of Lamiaceae medicinal plants that are already used by local communities in the Iberian Peninsula in wound healing. Henceforward, Iberian ethnobotanical surveys were reviewed, and the information about the traditional wound healing practices of Lamiaceae was comprehensively summarized. Afterwards, the scientific validation of each Lamiaceae species was exhaustively checked. From this, eight out of twenty-nine Lamiaceae medicinal plants were highlighted by their wound-related pharmacological evidence and are in-depth presented in this review. We suggest that future studies should focus on the isolation and identification of the active molecules of these Lamiaceae, followed by robust clinical trials that may confirm the security and effectiveness of such natural-based approaches. This will in turn pave the way for more reliable wound healing treatments.

8.
Pharmaceutics ; 15(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36839664

ABSTRACT

Lavandula pedunculata (Mill.) Cav., Mentha cervina L. and Thymus mastichina (L.) L. subsp. mastichina are representative species of the Côa Valley's flora, a Portuguese UNESCO World Heritage Site. L. pedunculata and T. mastichina are traditionally used to preserve olives and to aromatize bonfires on Saint John's Eve, while M. cervina is mainly used as a spice for river fish dishes. Despite their traditional uses, these aromatic plants are still undervalued, and literature regarding their bioactivity, especially anticancer, is scarce. In this work, the morphology of secretory structures was assessed by scanning electron microscopy (SEM), and the composition of essential oils (EOs) was characterized by gas chromatography-mass spectrometry (GC-MS). The study proceeded with cytotoxic evaluation of EOs in tumor and non-tumor cells with the cell death mechanism explored in glioblastoma (GB) cells. L. pedunculata EO presented the most pronounced cytotoxic/antiproliferative activity against tumor cells, with moderate cytotoxicity against non-tumor cells. Whereas, M. cervina EO exhibited a slightly lower cytotoxic effect against tumor cells and did not affect the viability of non-tumor cells. Meanwhile, T. mastichina EO did not induce a strong cytotoxic effect against GB cells. L. pedunculata and M. cervina EOs lead to cell death by inducing apoptosis in a dose-dependent manner. The present study suggests that L. pedunculata and M. cervina EOs have a strong cytotoxic and antiproliferative potential to be further studied as efficient antitumor agents.

9.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677847

ABSTRACT

Around 70-85% of all breast cancer (BC) cases are estrogen receptor-positive (ER+). The third generation of aromatase inhibitors (AIs) is the first-line treatment option for these tumors. Despite their therapeutic success, they induce several side effects and resistance, which limits their efficacy. Thus, it is crucial to search for novel, safe and more effective anti-cancer molecules. Currently, multi-target drugs are emerging, as they present higher efficacy and lower toxicity in comparison to standard options. Considering this, this work aimed to investigate the anti-cancer properties and the multi-target potential of the compound 1α,2α-epoxy-6-methylenandrost-4-ene-3,17-dione (Oxy), also designated by Oxymestane-D1, a derivative of Exemestane, which we previously synthesized and demonstrated to be a potent AI. For this purpose, it was studied for its effects on the ER+ BC cell line that overexpresses aromatase, MCF-7aro cells, as well as on the AIs-resistant BC cell line, LTEDaro cells. Oxy reduces cell viability, impairs DNA synthesis and induces apoptosis in MCF-7aro cells. Moreover, its growth-inhibitory properties are inhibited in the presence of ERα, ERß and AR antagonists, suggesting a mechanism of action dependent on these receptors. In fact, Oxy decreased ERα expression and activation and induced AR overexpression with a pro-death effect. Complementary transactivation assays demonstrated that Oxy presents ER antagonist and AR agonist activities. In addition, Oxy also decreased the viability and caused apoptosis of LTEDaro cells. Therefore, this work highlights the discovery of a new and promising multi-target drug that, besides acting as an AI, appears to also act as an ERα antagonist and AR agonist. Thus, the multi-target action of Oxy may be a therapeutic advantage over the three AIs applied in clinic. Furthermore, this new multi-target compound has the ability to sensitize the AI-resistant BC cells, which represents another advantage over the endocrine therapy used in the clinic, since resistance is a major drawback in the clinic.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Receptors, Estrogen/metabolism , MCF-7 Cells , Drug Resistance, Neoplasm
10.
Bioorg Chem ; 131: 106286, 2023 02.
Article in English | MEDLINE | ID: mdl-36459778

ABSTRACT

In this work, new steroidal aromatase inhibitors (AIs) were designed, synthesized, and tested. In one approach, C-ring substituted steroids namely those functionalized at C-11 position with an α or ß hydroxyl group or with a carbonyl group as well as C-9/C-11 steroidal olefins and epoxides were studied. It was found that the carbonyl group at C-11 is more beneficial for aromatase inhibition than the hydroxyl group, and that the C-ring epoxides were more potent than the C-ring olefins, leading to the discovery of a very strong AI, compound 7, with an IC50 of 0.011 µM, better than Exemestane, the steroidal AI in clinical use, which presents an IC50 of 0.050 µM. In another approach, we explored the biological activity of A-ring C-1/C-2 steroidal olefins and epoxides in relation to aromatase inhibition and compared it with the biological activity of C-ring C-9/C-11 steroidal olefins and epoxides. On the contrary to what was observed for the C-ring olefins and epoxides, the A-ring epoxides were less potent than A-ring olefins. Finally, the effect of 7ß-methyl substitution on aromatase inhibition was compared with 7α-methyl substitution, showing that 7ß-methyl is better than 7α-methyl substitution. Molecular modelling studies showed that the 7ß-methyl on C-7 seems to protrude into the opening to the access channel of aromatase in comparison to the 7α-methyl. This comparison led to find the best steroidal AI (12a) of this work with IC50 of 0.0058 µM. Compound 12a showed higher aromatase inhibition capacity than two of the three AIs currently in clinical use.


Subject(s)
Aromatase Inhibitors , Aromatase , Aromatase Inhibitors/pharmacology , Aromatase/metabolism , Steroids/pharmacology , Structure-Activity Relationship , Epoxy Compounds
11.
J Transl Med ; 20(1): 630, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36585670

ABSTRACT

Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.


Subject(s)
Antineoplastic Agents , Cucurbitacins , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Cucurbitacins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Plant Extracts
12.
Bioorg Med Chem ; 46: 116360, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34425478

ABSTRACT

Steroidal compounds were proven to be efficient drugs against several types of cancer. Oximes are also chemical structures frequently associated with anticancer activity. The main goal of this work was to combine the two referred structures by synthesizing steroidal oximes and evaluating them in several cancer cell lines. Compounds (17E)-5α-androst-3-en-17-one oxime (3,4 - OLOX), (17E)-3α,4α-epoxy-5α-androstan-17-one oxime (3,4 - EPOX), (17E)-androst-4-en-17-one oxime (4,5 - OLOX) and (17E)-4α,5α-epoxyandrostan-17-one oxime (4,5 - EPOX) were synthesized and their cytotoxicity evaluated in four human cancer cell lines, namely colorectal adenocarcinoma (WiDr), non-small cell lung cancer (H1299), prostate cancer (PC3) and hepatocellular carcinoma (HepG2). A human non-tumour cell line, CCD841 CoN (normal colon cell line) was also used. MTT assay, flow cytometry, fluorescence and hemocompatibility techniques were performed to further analyse the cytotoxicity of the compounds. 3,4 - OLOX was the most effective compound in decreasing tumour cell proliferation in all cell lines, especially in WiDr (IC50 = 9.1 µM) and PC3 (IC50 = 13.8 µM). 4,5 - OLOX also showed promising results in the same cell lines (IC50 = 16.1 µM in WiDr and IC50 = 14.5 µM in PC3). Further studies also revealed that 3,4 - OLOX and 4,5 - OLOX induced a decrease in cell viability accompanied by an increase in cell death, mainly by apoptosis/necroptosis for 3,4 - OLOX in both cell lines and for 4,5 - OLOX in WiDr cells, and by necrosis for 4,5 - OLOX in PC3 cells. These compounds might also exert their cytotoxicity by ROS production and are not toxic for non-tumour CCD841 CoN cells. Additionally, both compounds did not induce haemoglobin release, proving to be safe for intravenous administration. 3,4 - OLOX and 4,5 - OLOX might be the starting point for an optimization program towards the discover of new steroidal oximes for anticancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Oximes/pharmacology , Steroids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Oxidative Stress/drug effects , Oximes/chemical synthesis , Oximes/chemistry , Steroids/chemical synthesis , Steroids/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
J Steroid Biochem Mol Biol ; 212: 105950, 2021 09.
Article in English | MEDLINE | ID: mdl-34271024

ABSTRACT

A new promising steroid derivative of Exemestane (Exe), the drug used for the treatment of estrogen-dependent breast cancer, was synthesized and evaluated against a set of human cancer cell lines. The new compound (Oxymestane-D1, Oxy) was tested comparatively with Exe against colon (C2BBe1, WiDr), liver (HepG2, HuH-7), lung (A549, H1299) and prostate (LNCaP, PC3) human cancer cell lines. Likewise, its effect on human colon normal cells (CCD-841 CoN) and human normal fibroblast cells (HFF-1) was studied. The cytostatic activity of Oxy was also compared with that of the reference cytostatic drugs used in chemotherapy protocols, namely carboplatin, cisplatin, doxorubicin, epirubicin, etoposide, flutamide, 5-fluorouracil, irinotecan, oxaliplatin and sorafenib. In all cell lines tested, Oxy proved to be more powerful cytostatic than Exe. Additionally, the IC50 at 72 h showed a three-fold activity greater than 5-fluorouracil in the WiDr cell line, twice as high as cisplatin for cell line A549 and five times higher than cisplatin for cell line H1299. Also, Oxy surprisingly revealed to induce DNA damage and inhibit the DNA damage response (DDR) proteins ATM, ATR, CHK1 and CHK2. The results obtained allow concluding that Oxy can be a promising anticancer agent to be used in chemotherapy protocols. Furthermore, its ability to inhibit crucial components of DDR can also be useful for the monotherapy or for combination with chemo and/or radiotherapy of cancer.


Subject(s)
Androstadienes/pharmacology , Antineoplastic Agents/pharmacology , Cytostatic Agents/pharmacology , Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage , Estrogens , Humans , Membrane Potential, Mitochondrial/drug effects , Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism
14.
Eur J Med Chem ; 206: 112526, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32971442

ABSTRACT

Pluronics are a class of amphiphilic tri-block copolymers with wide pharmaceutical applicability. In the past decades, the ability to form biocompatible nanosized micelles was exploited to formulate stable drug nanovehicles with potential use in antitumor therapy. Due to the great potential for tuning physical and structural properties of Pluronic unimers, a panoply of drug or polynucleotide-loaded micelles was prepared and tested for their antitumoral activity. The attractive inherent antitumor properties of Pluronic polymers in combination with cell targeting and stimuli-responsive ligands greatly improved antitumoral therapeutic effects of tested drugs. In spite of that, the extraordinary complexity of biological challenges in the delivery of micellar drug payload makes their therapeutic potential still not exploited to the fullest. In this review paper we attempt to present the latest developments in the field of Pluronic based nanovehicles and their application in anticancer therapy with an overview of the chemistry involved in the preparation of these nanovehicles.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Nanomedicine , Nanostructures/chemistry , Poloxamer/chemistry , Animals , Humans
15.
Eur J Med Chem ; 201: 112327, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32526552

ABSTRACT

Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.


Subject(s)
Antineoplastic Agents/therapeutic use , Epoxy Compounds/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Humans , Molecular Structure
16.
J Steroid Biochem Mol Biol ; 195: 105486, 2019 12.
Article in English | MEDLINE | ID: mdl-31557516

ABSTRACT

Estrogen receptor-positive (ER+) breast cancers require estrogens for their growth. Aromatase inhibitors (AIs) are considered the first-line therapy for this type of tumours. Despite the well-established clinical benefit of this therapy, the search for novel potent AIs that present higher efficacy and fewer side effects is still demanded. Thus, taking into account the known interactions of the natural substrate, androstenedione, within the aromatase active-site, a range of new steroidal compounds have been designed, synthesized and studied by our group. In this work, it was evaluated in MCF-7aro, an ER+ breast cancer cell line that overexpress aromatase, the anti-aromatase efficacy and the biological effects of eight new AIs: 6α-methyl-5α-androst-3-en-17-one (1a), 6α-methyl-3α,4α-epoxy-5α-androstan-17-one (3a), 6α-methylandrost-4-ene-3,17-dione (9), 6α-allylandrosta-1,4-diene-3,17-dione (13), 6α-allylandrost-4-ene-3,17-dione (15), 6α-allylandrost-4-en-17-one (17), 6ß-hydroxyandrost-4-ene-3,17-dione (19) and 6α-hydroxyandrost-4-ene-3,17-dione (20). Their anti-cancer properties were elucidated, as well as, the dependence of their mechanism of action on aromatase inhibition and/or on steroid receptors modulation, such as estrogen and androgen receptors, which are key targets for this type of cancer. Results demonstrate that the studied AIs present high anti-aromatase activity, disrupt MCF-7aro cell cycle progression and induce apoptosis, through the mitochondrial pathway. Compounds 1a, 3a, 9, 13, 15 and 17 exhibited an aromatase-dependent effect on cells and, interestingly, steroids 9 and 13 displayed the ability to decrease aromatase protein levels without affecting CYP19A1 mRNA levels. Furthermore, the effects of compounds 1a, 3a and 15 were dependent on ER and on AR modulation, whereas compounds 9 and 19 were only dependent on AR modulation. From a clinical point of view, these actions can be considered as a therapeutic advantage for this type of tumours. Thus, new promising AIs that impair ER+ breast cancer cell growth, by acting on aromatase, and even, on ER and AR were discovered. Furthermore, new insights on the most favourable structural modifications in the steroidal core structure were provided, helping to a more rational drug design of new and potent AIs.


Subject(s)
Aromatase Inhibitors/pharmacology , Aromatase/metabolism , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Receptors, Androgen/metabolism , Aromatase/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , RNA, Messenger/metabolism
17.
Bioorg Chem ; 91: 103179, 2019 10.
Article in English | MEDLINE | ID: mdl-31404794

ABSTRACT

Selective inhibition of cyclooxygenase (COX)-2 enzyme is an important achievement when looking for potent anti-inflammatory agents, with fewer gastrointestinal side effects. In this work, a new series of cinnamic acid derivatives, namely hexylamides, have been designed, synthesized and evaluated in human blood for their inhibitory activity of COX-1 and COX-2 enzymes. From this, new structure-activity relationships were built, showing that phenolic hydroxyl groups are essential for both COX-1 and COX-2 inhibition. Furthermore, the presence of bulky hydrophobic di-tert-butyl groups in the phenyl ring strongly contributes for selective COX-2 inhibition. In addition, a correlation with the theoretical log P has been carried out, showing that lipophilicity is particularly important for COX-2 inhibition. Further, a plasma protein binding (PPB) prediction has been performed revealing that PPB seems to have no influence in the activity of the studied compounds. From the whole study, effective selective inhibitors of COX-2 were found, namely compound 9 (IC50 = 3.0 ±â€¯0.3 µM), 10 (IC50 = 2.4 ±â€¯0.6 µM) and 23 (IC50 = 1.09 ±â€¯0.09 µM). Those can be considered starting point hit compounds for further optimization as potential non-steroidal anti-inflammatory drugs.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Cinnamates/chemistry , Cyclooxygenase 1/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/chemistry , Drug Design , Leukocytes, Mononuclear/drug effects , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dinoprostone/metabolism , Humans , Leukocytes, Mononuclear/enzymology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 62(7): 3636-3657, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852901

ABSTRACT

C-6α and C-7α androstanes were studied to disclose which position among them is more convenient to functionalize to reach superior aromatase inhibition. In the first series, the study of C-6 versus C-7 methyl derivatives led to the very active compound 9 with IC50 of 0.06 µM and Ki = 0.025 µM (competitive inhibition). In the second series, the study of C-6 versus C-7 allyl derivatives led to the best aromatase inhibitor 13 of this work with IC50 of 0.055 µM and Ki = 0.0225 µM (irreversible inhibition). Beyond these findings, it was concluded that position C-6α is better to functionalize than C-7α, except when there is a C-4 substituent simultaneously. In addition, the methyl group was the best substituent, followed by the allyl group and next by the hydroxyl group. To rationalize the structure-activity relationship of the best inhibitor 13, molecular modeling studies were carried out.


Subject(s)
Aromatase Inhibitors/chemistry , Aromatase Inhibitors/pharmacology , Steroids/pharmacology , Humans , Molecular Docking Simulation , Steroids/chemistry , Structure-Activity Relationship
19.
Eur J Pharm Sci ; 123: 28-42, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30010029

ABSTRACT

Osteosarcoma (OS), the main primary malignancy of bone, is the second leading cause of cancer in children and young adults. Despite the advances in modern treatments, the 5-year survival rate is retained in 60-70%, since the conventional treatment options available are associated with relapse, chemoresistance, and development of metastases, which frequently lead to patients death. In this regard, there is an increasing need to search and develop novel and alternative therapeutic approaches. Concerning this, gene therapy appears as an innovative and promising treatment option. This therapeutic option aims to deliver genetic material, through nanosystems, to repress or replace the expression of mutated genes involved in important regulatory pathways. To attain this goal, gene therapy is decidedly dependent on the efficiency of utilized vectors, constituting such a very important parameter to take in consideration. In this work, the main goal was centered on the development and full characterization of an efficient micellar nanosystem, based on the chemical conjugation between the amphiphilic copolymer Pluronic® L64 and the cationic polymer polyethyleneimine (PEI), to deliver the therapeutic miRNA-145 into OS cells leading to inhibition of cell proliferation and migration, and ultimately inducing cell death, crafting a novel anticancer therapeutic approach to OS.


Subject(s)
Drug Carriers , MicroRNAs/administration & dosage , Osteosarcoma/therapy , Poloxamer , Polyethyleneimine , Animals , Cell Line, Tumor , Genetic Therapy/methods , Haplorhini , Humans , Micelles , MicroRNAs/therapeutic use
20.
J Steroid Biochem Mol Biol ; 171: 218-228, 2017 07.
Article in English | MEDLINE | ID: mdl-28396197

ABSTRACT

The majority of breast cancer cases are estrogen receptor positive (ER+). Although, third-generation aromatase inhibitors (AIs) are used as first-line treatment in post-menopausal women, they cause endocrine resistance and bone loss, which limits their success. Therefore, there is a demand to discover new potent molecules, with less toxicity that can circumvent these drawbacks. Our group has previously demonstrated that new 7α-substituted steroidal molecules, 7α-(2ξ,3ξ-epoxypropyl)androsta-1,4-diene-3,17-dione (3), 7α-allylandrost-4-ene-3,17-dione (6), 7α-allylandrost-4-en-17-one (9), 7α-allyl-3-oxoandrosta-1,4-dien-17ß-ol (10) and 7α-allylandrosta-1,4-diene-3,17-dione (12) are potent AIs in placental microsomes. In this work, it was investigated their anti-aromatase activity and in vitro effects in sensitive and resistant breast cancer cells. All the steroids efficiently inhibit aromatase in breast cancer cells, allowing to establish new structure-activity relationships for this class of compounds. Moreover, the new AIs can inhibit breast cancer cell growth, by causing cell cycle arrest and apoptosis. The effects of AIs 3 and 12 on sensitive cells were dependent on aromatase inhibition and androgen receptor (AR), while for AI 9 and AI 10 were AR- and ER-dependent, respectively. In addition, it was shown that all the AIs can sensitize resistant cancer cells being their behavior similar to the sensitive cells. In summary, this study contributes to the understanding of the structural modifications in steroidal scaffold that are translated into better aromatase inhibition and anti-tumor properties, providing important information for the rational design/synthesis of more effective AIs. In addition, allowed the discovery of new potent 7α-substituted androstane molecules to inhibit tumor growth and prevent endocrine resistance.


Subject(s)
Androstanes/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis/drug effects , Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Androstanes/adverse effects , Androstanes/chemistry , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Agents, Hormonal/chemistry , Aromatase/chemistry , Aromatase/genetics , Aromatase/metabolism , Aromatase Inhibitors/adverse effects , Aromatase Inhibitors/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...