Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21544, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732792

ABSTRACT

Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFß signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


Subject(s)
Fishes/genetics , Fishes/physiology , Gene Duplication , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/physiology , Sex Chromosomes , Animals , Chromosome Mapping , Conservation of Natural Resources , DNA/metabolism , Evolution, Molecular , Female , Fisheries , Genetic Markers/genetics , Genotype , Male , Phenotype , Phylogeny , Polymerase Chain Reaction , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Analysis, DNA , Y Chromosome
2.
An Acad Bras Cienc ; 92(1): e20180496, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32187273

ABSTRACT

Arapaima is a widely-distributed fish of enormous economic importance in the Amazon region. In the present study, a total of 232 specimens were sampled, 121 from five sites in the Amazon basin and 111 from five sites in the Tocantins-Araguaia basin. The analyses investigated fragments of the Cytochrome b, Control Region, Cytochrome Oxidase I, NADH dehydrogenase subunit 2 and seven loci microsatellites. The analyses revealed the existence of two mitochondrial lineages within the general area, with no haplotypes shared between basins, and genetic variability significantly higher in the Amazon than in the Tocantins-Araguaia basin. Two divergent, but sympatric mitochondrial lineages were found in the Amazon basin, but only a single lineage in the Tocantins-Araguaia basin. The existence of these two mitochondrial lineages indicates that past events, probably occurring during the Pleistocene, resulted in the separation of the populations of this species and molded its evolutionary history, which is reflected directly in its mitochondrial DNA. The analysis of the arapaima population structure identified distinct levels of diversity within the distribution of the species, indicating specific geographic regions that will require special attention for the development of conservation and management strategies.


Subject(s)
DNA, Mitochondrial/genetics , Fishes/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics , Animals , Brazil , Fishes/classification , Geography , Phylogeny , Rivers
3.
Phytochemistry ; 65(1): 59-69, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14697271

ABSTRACT

The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences.


Subject(s)
DNA, Ribosomal/genetics , Fabaceae/genetics , Algorithms , Base Sequence , Cell Nucleus/genetics , Consensus Sequence , DNA, Plant/genetics , Fabaceae/classification , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...