Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 86(7): 1654-1666, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37458412

ABSTRACT

Artemisia annua is the plant that produces artemisinin, an endoperoxide-containing sesquiterpenoid used for the treatment of malaria. A. annua extracts, which contain other bioactive compounds, have been used to treat other diseases, including cancer and COVID-19, the disease caused by the virus SARS-CoV-2. In this study, a methyl ester derivative of arteannuin B was isolated when A. annua leaves were extracted with a 1:1 mixture of methanol and dichloromethane. This methyl ester was thought to be formed from the reaction between arteannuin B and the extracting solvent, which was supported by the fact that arteannuin B underwent 1,2-addition when it was dissolved in deuteromethanol. In contrast, in the presence of N-acetylcysteine methyl ester, a 1,4-addition (thiol-Michael reaction) occurred. Arteannuin B hindered the activity of the SARS CoV-2 main protease (nonstructural protein 5, NSP5), a cysteine protease, through time-dependent inhibition. The active site cysteine residue of NSP5 (cysteine-145) formed a covalent bond with arteannuin B as determined by mass spectrometry. In order to determine whether cysteine adduction by arteannuin B can inhibit the development of cancer cells, similar experiments were performed with caspase-8, the cysteine protease enzyme overexpressed in glioblastoma. Time-dependent inhibition and cysteine adduction assays suggested arteannuin B inhibits caspase-8 and adducts to the active site cysteine residue (cysteine-360), respectively. Overall, these results enhance our understanding of how A. annua possesses antiviral and cytotoxic activities.


Subject(s)
Artemisinins , COVID-19 , Cysteine Proteases , Humans , Caspase 8/metabolism , Cysteine Proteases/metabolism , Sulfhydryl Compounds/pharmacology , Cysteine/pharmacology , SARS-CoV-2 , Plant Extracts/chemistry , Artemisinins/chemistry
2.
J Nat Prod ; 85(4): 951-962, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357832

ABSTRACT

Dihydroartemisinic acid (DHAA) is a plant natural product that undergoes a spontaneous endoperoxide-forming cascade reaction to yield artemisinin in the presence of air. The endoperoxide functional group gives artemisinin its biological activity that kills Plasmodium falciparum, the parasite that causes malaria. To enhance our understanding of the mechanism of this cascade reaction, 2,3-didehydrodihydroartemisinic acid (2,3-didehydro-DHAA), a DHAA derivative with a double bond at the C2-position, was synthesized. When 2,3-didehydro-DHAA was exposed to air over time, instead of forming an endoperoxide, this compound predominantly underwent aromatization. This olefinated DHAA analogue reveals the requirement of a monoalkene functional group to initiate the endoperoxide-forming cascade reaction to yield artemisinin from DHAA. In addition, this aromatization process was exploited to illustrate the autoxidation process of a different plant natural product, dihydroserrulatene, to form the aromatic ring in serrulatene. This spontaneous aromatization process has applications in other natural products such as leubethanol and erogorgiaene. Due to their similarity in structure to antimicrobial natural products, the synthesized compounds in this study were tested for biological activity. A group of the tested compounds had minimum inhibitory concentration (MIC) values ranging from 12.5 to 25 µg/mL against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Cryptococcus neoformans.


Subject(s)
Antimalarials , Biological Products , Malaria , Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins , Humans
3.
J Nat Prod ; 84(7): 1967-1984, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34137611

ABSTRACT

Artemisinin is the plant natural product used to treat malaria. The endoperoxide bridge of artemisinin confers its antiparasitic properties. Dihydroartemisinic acid is the biosynthetic precursor of artemisinin that was previously shown to nonenzymatically undergo endoperoxide formation to yield artemisinin. This report discloses the synthesis of [15,15,15-2H3]-dihydroartemisinic acid and its use to determine the mechanism of endoperoxide formation. Several new observations were made: (i) Ultraviolet-C (UV-C) radiation initially accelerates artemisinin formation and subsequently promotes homolytic cleavage of the O-O bond and rearrangement of artemisinin to a different product, and (ii) dideuterated and trideuterated dihydroartemisinic acid isotopologues at C3 and C15 converted to artemisinin at a slower rate compared to nondeuterated dihydroartemisinic acid, revealing a kinetic isotope effect in the initial ene reaction toward endoperoxide formation (kH/kD ∼ 2-3). (iii) The rate of conversion from dihydroartemisinic acid to artemisinin increased with the amount of dihydroartemisinic acid, suggesting an intermolecular interaction to promote endoperoxide formation, and (iv) 18O2-labeling showed incorporation of three and four oxygen atoms from molecular oxygen into the endoperoxide bridge of artemisinin. These results reveal new insights toward understanding the mechanism of endoperoxide formation in artemisinin biosynthesis.


Subject(s)
Antimalarials/chemical synthesis , Artemisinins/chemical synthesis , Molecular Structure
4.
J Nat Prod ; 83(1): 66-78, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31859509

ABSTRACT

Dihydroartemisinic acid is the biosynthetic precursor to artemisinin, the endoperoxide-containing natural product used to treat malaria. The conversion of dihydroartemisinic acid to artemisinin is a cascade reaction that involves C-C bond cleavage, hydroperoxide incorporation, and polycyclization to form the endoperoxide. Whether or not this reaction is enzymatically controlled has been controversial. A method was developed to quantify the nonenzymatic conversion of dihydroartemisinic acid to artemisinin using LC-MS. A seven-step synthesis of 3,3-dideuterodihydroartemisinic acid (23) was accomplished beginning with dihydroartemisinic acid (1). The nonenzymatic rates of formation of 3,3-dideuteroartemisinin (24) from 3,3-dideuterodihydroartemisinic acid (23) were 1400 ng/day with light and 32 ng/day without light. Moreover, an unexpected formation of nondeuterated artemisinin (3) from 3,3-dideuterodihydroartemisinic acid (23) was detected in both the presence and absence of light. This formation of nondeuterated artemisinin (3) from its dideuterated precursor (23) suggests an alternative mechanistic pathway that operates independent of light to form artemisinin, involving the loss of the two C-3 deuterium atoms.


Subject(s)
Antimalarials/chemical synthesis , Artemisinins/chemistry , Artemisinins/chemical synthesis , Sesquiterpenes/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Chromatography, Liquid , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...