Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676044

ABSTRACT

This research paper delves into the effectiveness and impact of behavior change techniques fostered by information technologies, particularly wearables and Internet of Things (IoT) devices, within the realms of engineering and computer science. By conducting a comprehensive review of the relevant literature sourced from the Scopus database, this study aims to elucidate the mechanisms and strategies employed by these technologies to facilitate behavior change and their potential benefits to individuals and society. Through statistical measurements and related works, our work explores the trends over a span of two decades, from 2000 to 2023, to understand the evolving landscape of behavior change techniques in wearable and IoT technologies. A specific focus is placed on a case study examining the application of behavior change techniques (BCTs) for monitoring vital signs using wearables, underscoring the relevance and urgency of further investigation in this critical intersection of technology and human behavior. The findings shed light on the promising role of wearables and IoT devices for promoting positive behavior modifications and improving individuals' overall well-being and highlighting the need for continued research and development in this area to harness the full potential of technology for societal benefit.


Subject(s)
Internet of Things , Wearable Electronic Devices , Humans
2.
Disabil Rehabil Assist Technol ; : 1-8, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217485

ABSTRACT

PURPOSE: Assistive technologies based on IoT can contribute to improve quality of living of patients with severe motor difficulties by providing partial or total independence. The aim of this work was to analyse the usability and performance of an assistive system based on the IoT when is evaluated by a child patient with spinal muscular atrophy type 1 (SMA-I). MATERIALS AND METHODS: The study involved a child with SMA-I and his caregiver. The materials used include an M5Stack Core2 kit, a mobile app, and a smart switch based on the ESP-01S card. The patient sends requests to the caregiver from the app installed on the M5Stack Core2 to a mobile app, and controls smart switches located in the rooms. The system was tested by the participants for a period of 30 days to later evaluate its usability and performance. RESULTS: The results show that the control function of smart switches is the most used and there is no decrease in interactions over the days for the system in general. In addition, the scores obtained from both usability tests (patient and caregiver) were 87.5% and 90%, respectively. The average performance of the entire system was 93.33%. CONCLUSION: The application of assistive technologies based on the IoT allows obtaining a practical solution that improves the development of daily activities in a patient with SMA-I.


A low-cost device can contribute to improve the quality of living of spinal muscular atrophy patients by favouring partial or total independence.IoT-based assistive technologies allow obtaining practical solutions that improve the development of daily activities.

3.
J Neuroeng Rehabil ; 20(1): 168, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38110970

ABSTRACT

BACKGROUND: In recent years, the use of virtual reality (VR) as a complementary intervention in treating cognitive impairment has significantly increased. VR applications based on instrumental activities of daily living (iADL-VR) could offer a promising approach with greater ecological validity for intervention in groups with cognitive impairments. However, the effectiveness of this approach is still debated. OBJECTIVE: This systematic review aims to synthesize the effects of iADL-VR interventions to rehabilitate, train, or stimulate cognitive functions in healthy adults and people with mild cognitive impairment (MCI) and different types of dementia. METHODS: A systematic search was performed in the Scopus, PubMed, IEEE Xplore, Web of Science, and APA PsycNet databases until September 2022 and repeated in April 2023. The selected studies met the search terms, were peer-reviewed, included an iADL-VR intervention, and were written in English. Descriptive, qualitative studies, reviews, cognitive assessment, non-intervention studies, those unrelated to VR or iADL, those focused on motor aspects, and non-degenerative disorders were excluded. The PEDro scale was used to assess the methodological quality of the controlled studies. To present and synthesize the results, we organized the extracted data into three tables, including PEDro scores, participant characteristics, and study characteristics. RESULTS: Nineteen studies that met the inclusion and exclusion criteria were included. The total sample reached 590 participants, mostly women (72.67%). Approximately 30% were diagnosed with Alzheimer's disease or dementia, and 20% had mild cognitive impairment. Variables such as authors and year of publication, study design, type of intervention and VR applied, duration of the intervention, main findings, and conclusions were extracted. Regarding demographic characteristics, the sample size, age, sex, years of education, neurological diagnosis, dropouts, and the city and country where the intervention took place were recorded. Almost all studies showed improvements in some or all the outcomes after the intervention, generally greater in the iADL-VR group than in the control group. CONCLUSION: iADL-VR interventions could be beneficial in improving the performance of cognitive functions in older adults and people with MCI and different types of dementia. The ecological component of these tasks makes them very suitable for transferring what has been learned to the real world. However, such transfer needs to be confirmed by further studies with larger and more homogeneous samples and longer follow-up periods. This review had no primary funding source and was registered with PROSPERO under registration ID: 375166.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Virtual Reality , Humans , Female , Aged , Male , Activities of Daily Living , Cognition
4.
BMC Med Inform Decis Mak ; 23(1): 195, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759259

ABSTRACT

BACKGROUND: Loss of cognitive and executive functions is a problem that affects people of all ages. That is why it is important to perform exercises for memory training and prevent early cognitive deterioration. The aim of this work was to compare the cognitive performance of the participants after an intervention by using two mnemonic techniques to exercise memory functions (paired-associate learning and method of loci). METHODS: A longitudinal study was conducted with 21 healthy participants aged 18 to 55 years over a 2-month period. To assess the impact of this proposal, the NEUROPSI brief battery cognitive assessment test was applied before and after the intervention. In each session, a previous cognitive training was carried out using the paired-associate learning technique, to later perform a task based on the loci method, all from a smart device-based application. The accuracy response and reaction times were automatically collected in the app. RESULTS: After the intervention, a statistically significant improvement was obtained in the neuropsychological assessment (NEUROPSI neuropsychological battery) reflected by the Wilcoxon paired signed-rank test (P < .05). CONCLUSION: The task based on the method of loci also reflected the well-known age-related effects common to memory assessment tasks. Episodic memory training using the method of loci can be successfully implemented using a smart device app. A stage-based methodological design allows to acquire mnemic skills gradually, obtaining a significant cognitive improvement in a short period of time.


Subject(s)
COVID-19 , Medicine , Humans , Longitudinal Studies , Pandemics/prevention & control , Exercise Therapy
5.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991657

ABSTRACT

Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes. The recent innovations and breakthroughs in deep learning (DL) methods have paved the way to adequately address these challenges. The DL-based NOMA can break these fundamental limits of conventional NOMA in several aspects, including throughput, bit-error-rate (BER), low latency, task scheduling, resource allocation, user pairing and other better performance characteristics. This article aims to provide firsthand knowledge of the prominence of NOMA and DL and surveys several DL-enabled NOMA systems. This study emphasizes Successive Interference Cancellation (SIC), Channel State Information (CSI), impulse noise (IN), channel estimation, power allocation, resource allocation, user fairness and transceiver design, and a few other parameters as key performance indicators of NOMA systems. In addition, we outline the integration of DL-based NOMA with several emerging technologies such as intelligent reflecting surfaces (IRS), mobile edge computing (MEC), simultaneous wireless and information power transfer (SWIPT), Orthogonal Frequency Division Multiplexing (OFDM), and multiple-input and multiple-output (MIMO). This study also highlights diverse, significant technical hindrances in DL-based NOMA systems. Finally, we identify some future research directions to shed light on paramount developments needed in existing systems as a probable to invigorate further contributions for DL-based NOMA system.

6.
Article in English | MEDLINE | ID: mdl-36901618

ABSTRACT

Few works analyze the parameters inherent to immersive virtual reality (IVR) in applications for memory evaluation. Specifically, hand tracking adds to the immersion of the system, placing the user in the first person with full awareness of the position of their hands. Thus, this work addresses the influence of hand tracking in memory assessment with IVR systems. For this, an application based on activities of daily living was developed, where the user must remember the location of the elements. The data collected by the application are the accuracy of the answers and the response time; the participants are 20 healthy subjects who pass the MoCA test with an age range between 18 to 60 years of age; the application was evaluated with classic controllers and with the hand tracking of the Oculus Quest 2. After the experimentation, the participants carried out presence (PQ), usability (UMUX), and satisfaction (USEQ) tests. The results indicate no difference with statistical significance between both experiments; controller experiments have 7.08% higher accuracy and 0.27 ys. faster response time. Contrary to expectations, presence was 1.3% lower for hand tracking, and usability (0.18%) and satisfaction (1.43%) had similar results. The findings indicate no evidence to determine better conditions in the evaluation of memory in this case of IVR with hand tracking.


Subject(s)
Activities of Daily Living , Virtual Reality , Humans , Adolescent , Young Adult , Adult , Middle Aged , Hand , Upper Extremity , User-Computer Interface
7.
Sensors (Basel) ; 22(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35808209

ABSTRACT

Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters' trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler-Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter-DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.

8.
Sensors (Basel) ; 20(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212748

ABSTRACT

Virtual Reality (VR) has had significant advances in rehabilitation, due to the gamification of cognitive activities that facilitate treatment. On the other hand, Immersive Virtual Reality (IVR) produces outstanding results due to the interactive features with the user. This work introduces a VR application for memory rehabilitation by walking through a maze and using the Oculus Go head-mounted display (HMD) technology. The mechanics of the game require memorizing geometric shapes while the player progresses in two modes, autonomous or manual, with two levels of difficulty depending on the number of elements to remember. The application is developed in the Unity 3D video game engine considering the optimization of computational resources to improve the performance in the processing and maintaining adequate benefits for the user, while the generated data is stored and sent to a remote server. The maze task was assessed with 29 subjects in a controlled environment. The obtained results show a significant correlation between participants' response accuracy in both the maze task and a face-pair test. Thus, the proposed task is able to perform memory assessments.


Subject(s)
Cognition , Rehabilitation/instrumentation , Smart Glasses , Virtual Reality , Adult , Female , Humans , Male , Memory , Video Games , Walking , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...