Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Physiol ; 14: 1230943, 2023.
Article in English | MEDLINE | ID: mdl-37654677

ABSTRACT

Edible bivalves constitute an important bioresource from an economic point of view, and studies on their immune responses to environmental pollutants are crucial for both the preservation of biodiversity and economic reasons. The worldwide diffusion of copper(I)-based antifouling paints has increased copper leaching into coastal environments and its potential impact on both target and nontarget organisms. In this study, immunotoxicity assays were carried out with short-term (60 min) cultures of hemocytes from the bivalves Mytilus galloprovincialis-a mussel dominant in the macrofouling community-and Ruditapes philippinarum-a clam dominant in the soft-sediment community-exposed to CuCl to compare the toxic effects on their immune responses. The LC50 values were similar, 40 µM (3.94 mg L-1) for the mussel and 44 µM (4.33 mg L-1) for the clam. In both species, apoptosis occurred after exposure to 1 µM (98.9 µg L-1) CuCl, the concentration able to significantly increase the intracellular Ca2+ content. Biomarkers of cell morphology and motility revealed microfilament disruption, a significant decrease in yeast phagocytosis and lysosome hydrolase (ß-glucuronidase) inhibition beginning from 0.5 µM (49.5 µg L-1) CuCl in both the mussel and clam. The same concentration of CuCl affected biomarkers of oxidative stress, as a significant decrease in reduced glutathione content in the cytoplasm and inhibition of mitochondrial cytochrome-c oxidase (COX) were detected in both species. Comparison of the biomarkers showed that clam is more sensitive than the mussel regarding alterations to the lysosomal membrane and reactive oxygen species (ROS) production, which supports the potential harmful effects of antifouling biocides on the survival of nontarget pivotal species in the coastal community.

2.
Environ Sci Pollut Res Int ; 30(4): 8633-8646, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35001280

ABSTRACT

The expanded use of copper(I)-based antifouling paints (AF) has increased copper leaching into coastal environments, requiring attention and legislative restrictions for potential long-term effects on benthic populations. The ecological succession of macrofouling communities was analysed on wooden and stainless steel panels coated with four copper(I)-based AF (Paints A-D) immersed for 10 months in the Lagoon of Venice. With the exception of Paint B, which contained only copper(I) compounds and was based on hard-matrix technology, the other paints were based on self-polishing matrices and various booster biocides. The booster content was a mix of TBT compounds for Paint A, dichlofluanid for Paint C, Irgarol 1051, and chlorothalonil for Paint D. The macrofouling communities appeared dissimilar to those on the reference uncoated panels as regard the species richness, the coverage areas, and the biocoenosis structure. Generally, green algae, bryozoans, and barnacles were the most tolerant taxa and a negative species selection occurred for sponges, serpulids, and ascidians. Paints A and D showed the highest performance, and Paint D also prevented molluscs on wood panels. Paints B and C rapidly decreased their efficiency, the first probably due to the insoluble matrix with the highest biocidal leaching rate, and the second due to the presence of a booster with low toxicity. Paint B also inhibited red algae and molluscs, but Paint C did not reveal significant differences in types of species settlements with reference panels.


Subject(s)
Biofouling , Thoracica , Water Pollutants, Chemical , Animals , Copper/analysis , Biofouling/prevention & control , Biodiversity , Paint , Water Pollutants, Chemical/analysis
3.
Mar Environ Res ; 170: 105414, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34273865

ABSTRACT

Nonwoven geotextile fabrics have physical, mechanical and hydraulic properties useful in coastal protection as an alternative to natural stone, slag, and concrete. In a 10-month experiment, the colonisation of macrofouling organisms on different substrata based on polypropylene (PP), polyester (PET) or high density polyethylene (HDPE) fibres was investigated in the Lagoon of Venice, Italy - an environment with temperate transitional waters with high biodiversity - and compared with the colonisation on wood as a reference substratum, because of its occurrence in artificial structures at the study location, until a stable stage was reached in the development of the macrofouling community. Geotextile fabrics showed implications for community development. They affected both ecological succession in different ways by disturbing biofouling settlement and growth (HDPE fabrics) or favouring species which become dominant (PP fabrics). For these two-faceted aspects that potentially cause different long-term impacts on the biodiversity of resident communities, the use of geotextile fabrics as antifouling or as profouling systems for restoration of degraded ecosystems is discussed. In all cases, the communities displayed unique properties, such as differences in the settlement of pioneer species, an initial disturbance to serpulid settlement, absence of barnacles, selection of dominant taxa (ascidians), and changes in the percentages of various taxa forming the community structure. Given the increasing interest in geotextile materials for employment in various marine developments and industries, these results could represent first lines of evidence to inform decision-making to minimise/modify biofouling, and/or predict the use of artificial substrata as habitats by marine organisms.


Subject(s)
Biofouling , Thoracica , Urochordata , Animals , Biodiversity , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL