Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891756

ABSTRACT

In recent years, the potential of insects as a sustainable protein alternative to feed the growing world population has been explored. Differences in the ways insects are processed can affect their proximate composition and digestibility. This work studied the effects of the combination of different types of slaughter methods and drying temperatures on the proximate composition, organic matter digestibility (OMd), hydrolysis degree (DH/NH2 and DH/100 g DM), total hydrolysis (TH), and hygienic and sanitary characteristics of BSFL (black soldier fly larvae) meal. Four types of slaughter methods were used including freezing (F), blanching + freezing (B), Melacide® + freezing (M), and liquid nitrogen slaughter (N). Each of these was used with three drying temperatures (50, 70, and 90 °C). A negative correlation between the acid detergent fiber (ADF) and protein digestibility parameters was obtained. The most suitable drying temperature was 70 °C, as it produced higher values of protein digestibility (DH and TH), resulting in hygienic and sanitary conditions suitable for food use. Slaughtering with liquid nitrogen and blanching was more conducive to achieving high protein digestibility results than traditional freezing or the use of Melacide®.

2.
Environ Sci Pollut Res Int ; 31(9): 13673-13687, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38261222

ABSTRACT

Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.


Subject(s)
Chitosan , Nanoparticles , Organometallic Compounds , Pyridines , Zein , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Alginates , Polyphenols/pharmacology , Anti-Bacterial Agents/pharmacology , Tea
3.
Animals (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38200825

ABSTRACT

Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that can meet the needs of fish. Insects, due to their high protein content and good amino acid profiles, could be a successful alternative to fishmeal and soybean meal traditionally used in sectors such as aquaculture. In this work, seven species of insects (Hermetia illucens, Tenebrio molitor, Acheta domestica, Alphitobius diaperinus, Gryllodes sigillatus, Gryllus assimilis, and Musca domestica) approved by the European Union (UE) for use as feed for farmed animals (aquaculture, poultry, and pigs) were studied. Their proximate composition, hydrolysis of organic matter (OMd), hydrolysis of crude protein (CPd), degree of hydrolysis (DH/NH2 and DH/100 g DM), and total hydrolysis (TH) were analyzed. The results showed that Tenebrio molitor had digestibility similar to that of fishmeal, while Acheta domestica and Hermetia illucens provided similar digestibility to that of soybean meal. The acid detergent fiber (ADF) data were negatively correlated with all protein digestibility variables. The differences in the degree of hydrolysis (DH) results and the similarity in total hydrolysis (TH) results could indicate the slowing effects of ADF on protein digestibility. Further in vivo studies are needed.

4.
Insects ; 13(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35206700

ABSTRACT

Fish discards are organic waste with high and good-quality protein levels, as well as a fatty acid profile rich in n-3 LCPUFAs, mainly eicosapentaenoic acid and docosahexaenoic acid. These discards can be used as food for Tenebrio molitor (Linnaeus, 1758) larvae, thus increasing the nutritional value of this insect. This study focused on increasing larval acceptance of fish through different pre-treatments of the diets provided, as well as increasing the accumulation of EPA and DHA in fish-fed larvae. Four different diets were prepared: control (broiler feed), DGF50: 50% dried ground fish (Pagellus bogaraveo, Brünnich, 1768) + 50% broiler feed, for different periods, FGF100: 100% fresh ground P. bogaraveo and DUF100: 100% dried whole unground P. bogaraveo. Growth, mortality, proximate composition, fatty acid profile and lipid nutritional indices were determined. Larvae fed with FGF100 displayed better results among treatments, doubling the initial weight, as well as increasing their protein level and decreasing fat levels. Regarding fatty acids, eicosapentaenoic acid and docosahexaenoic acid were only detected in larvae fed with a fish-based diet for a period longer than 5 days. These results show that pre-treatment of fish-based diets causes changes in the growth and compositional parameters of T. molitor larvae.

SELECTION OF CITATIONS
SEARCH DETAIL
...