Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893992

ABSTRACT

In order to facilitate the prediction of some physical properties, we propose several simple formulas based on two parameters only, the metallic valence and metallic atomic radii. Knowing the composition, for single-phase alloys, the average parameters can be calculated by the rule of mixture. The input parameters can be obtained from tabulated databases. Adopting from the literature the results of Coulomb crystal model for metals and single-phase high-entropy alloys, we have derived formulas for the shear modulus (G) and the cohesion energy (Ecoh). Based on these parameters separately, we set up two formulas to estimate the hardness in the case of pure metals. For single-phase (solid-solution) HEAs, by simplifying the Maresca and Curtin model, we obtained a formula for estimating the hardness, which takes into account the atomic misfit in addition to G. The maximal hardness for single-phase HEA is approximately 600 kg/mm2 and is obtained for a composition with a valence electron concentration of approximately 6 ÷ 7.

2.
Materials (Basel) ; 16(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36984190

ABSTRACT

The relationship between the tendencies towards rigidity (measured by shear modulus, G) and hardness (measured by Vickers hardness, HV) of early transition metal (ETM)-based refractory high-entropy alloys (RHEA) and bond parameters (i.e., valence electron concentration (VEC), enthalpy of mixing (ΔHmix)) was investigated. These bond parameters, VEC and ΔHmix, are available from composition and tabulated data, respectively. Based on our own data (9 samples) and those available from the literatures (47 + 27 samples), it seems that for ETM-based RHEAs the G and HV characteristics have a close correlation with the bonding parameters. The room temperature value of G and HV increases with the VEC and with the negative value of ΔHmix. Corresponding equations were deduced for the first time through multiple linear regression analysis, in order to help design the mechanical properties of ETM refractory high-entropy alloys.

3.
Materials (Basel) ; 14(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669106

ABSTRACT

The present investigation is directed to phase transitions in the equimolar NiCoFeCrGa high entropy alloy, which is a mixture of face-centered cubic (FCC) and body-centered cubic (BCC) crystalline phases. The microstructure of the samples was investigated by using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), transmission electron microscopy-based energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), as well as X-ray diffraction (XRD) measurements. Based on the phases observed in different temperature ranges, a sequence of the phase transitions can be established, showing that in a realistic process, when freely cooling the sample with the furnace from high to room temperature, a microstructure having spinodal-like decomposition can also be expected. The elemental mapping and magnetic behaviors of this decomposed structure are also studied.

4.
Nanotechnology ; 31(38): 384001, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32503013

ABSTRACT

DyPdBi (DPB) is a topological semimetal which belongs to the rare-earth-based half-Heusler alloy family. In this work, we studied the thickness-dependent structural and magneto-transport properties of DPB thin films (20 to 60 nm) grown using pulsed laser deposition. The DPB thin films show (110) oriented growth on MgO(100) single crystal substrates. Longitudinal resistance data indicate metallic surface states dominated carrier transport and the suppression of semiconducting bulk state carriers for films ≤40 nm. We observe the weak antilocalization (WAL) effect and Shubnikov-de Hass (SdH) oscillations in the magneto-transport data. The presence of a single coherent transport channel (α∼ -0.50) is observed in the Hikami-Larkin-Nagaoka (HLN) fitting of WAL data. The power law temperature dependence of phase coherence length (LØ ) ∼ T-0.50 indicates the observation of the 2D WAL effect and the presence of topological nontrivial surface states for films ≤40 nm. The 60 nm sample shows semiconducting resistivity behavior at higher temperature (>180 K) and HLN fitting results (α∼ -0.72, LØ âˆ¼ T-0.68 ) indicate the presence of partial decoupled top and bottom surface states. The Berry phase ∼π is extracted for thin films ≤40 nm, which further demonstrates the presence of Dirac fermions and nontrivial surface states. Band structure parameters are extracted by fitting SdH data to the standard Lifshitz-Kosevich formula. The sheet carrier concentration and cyclotron effective mass of carriers decrease with increasing thickness (20 nm to 60 nm) from ∼1.35 × 1012 cm-2 to 0.68 × 1012 cm-2 and from ∼0.26 me to 0.12 me, respectively. Our observations suggest that samples with a thickness ≤40 nm have transport properties dominated by surface states and samples with a thickness ≥60 nm have contributions from both bulk and surface states.

5.
Sci Rep ; 8(1): 9931, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29967437

ABSTRACT

Recently, a number of ternary half-Heusler compounds have been predicted independently by several research groups as candidates for 3D topological insulators. In this work, we report the observation of a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hall-marks of topological surface states, and Shubnikov-de Hass (SdH) quantum oscillations in <110> oriented DyPdBi (DPB) thin films grown on MgO (100) substrates. The films prepared by pulsed laser deposition technique under the optimized conditions, showed a textured structure with (110) planes parallel to the (100) plane of MgO. The measured WAL effect follows the Hikami-Larkin-Nagaoka (HLN) model and the extracted values of phase coherence length (lϕ) and α are ~420 nm and ~-0.52 respectively. The power law variation of lϕ (~T-0.46) indicates the presence of the 2D surface states in DPB film. The Dirac nature of the surface states is further confirmed by Landau-level fan diagram analysis of SdH oscillations of the magneto-transport data. This analysis shows a finite Berry phase of 0.90π ± 0.16, reasonably close to the expected π value. Sheet Carrier density, ns ~ 2.56 × 1012 cm-2, calculated from the SdH oscillations (fSdH ~ 106 T) and Hall measurements agree well with each other. These findings demonstrate that the half Heusler DPB thin films (~15-20 nm) can be used as a suitable material for investigating the novel intrinsic quantum transport properties of surface Dirac fermions.

6.
J Phys Condens Matter ; 27(7): 075401, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25640032

ABSTRACT

The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs.

SELECTION OF CITATIONS
SEARCH DETAIL