Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676040

ABSTRACT

The advantageous applications of magnetic bistable microwires have emerged during long-lasting research. They have a wide range of applications in the scientific sphere or technical practice. They can be used for various applications, including magnetic memories, biomedicine, and sensors. This manuscript is focused on the last-mentioned application of microwires-sensors-discussing various digital signal processing techniques used in practical applications. Thanks to the highly sensitive properties of microwires and their two stable states of magnetization, it is possible to perform precise measurements with less demanding digital processing. The manuscript presents four practical signal-processing methods of microwire response using three different experiments. These experiments are focused on detecting the signal in a simple environment without an external magnetic background, measuring with the external background of a ferromagnetic core, and measuring in harsh conditions with a strong magnetic background. The experiments aim to propose the best method under various conditions, emphasizing the quality and signal processing speed of the microwire signal.

2.
Materials (Basel) ; 17(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38255575

ABSTRACT

In this article, the downsizing of functional Heusler alloys is discussed, focusing on the published results dealing with Heusler alloy nanowires. The theoretical information inspired the fabrication of novel nanowires that are presented in the results section of the article. Three novel nanowires were fabricated with the compositions of Ni66Fe21Ga13, Ni58Fe28In14, and Ni50Fe31Sn19. The Ni66Fe21Ga13 nanowires were fabricated, aiming to improve the stoichiometry of previous functional Ni-Fe-Ga Heusler nanomaterials with a functional behavior above room temperature. They exhibit a phase transition at the temperature of ≈375 K, which results in a magnetocaloric response of |ΔSM| ≈ 0.12 J·kg-1·K-1 at the magnetic field change of only µ0ΔH = 1 T. Novel Heusler alloy Ni58Fe28In14 nanowires, as well as Ni50Fe31Sn19 nanowires, are analyzed for the first time, and their magnetic properties are discussed, introducing a simple electrochemical approach for the fabrication of nanodimensional alloys from mutually immiscible metals.

3.
Materials (Basel) ; 14(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494251

ABSTRACT

The structure of the Co2MnAl-type Heusler alloy in the form of a melt-spun ribbon was studied by electron microscopy, electron back-scattered diffraction (EBSD), and X-ray diffraction. The melt-spun ribbon consists of a homogeneous single-phase disordered Heusler alloy at the wheel side of the ribbon and an inhomogeneous single-phase alloy, formed by cellular or dendritic growth, at the free surface of the ribbon. Cellular growth causes the formation of an inhomogeneous distribution of the elemental constituents, with a higher Co and Al concentration in the centre of the cells or dendritic arms and a higher concentration of Mn at the cell boundaries. The EBSD analysis shows that the columnar crystals grow in the <111> crystal direction and are declined by about 10° against the direction of the spinning.

4.
Sensors (Basel) ; 19(21)2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31717817

ABSTRACT

In this paper, a magnetic microwire-based sensor array embedded under the pavement is proposed as a weighing system at customs ports of entry. This sensor is made of a cementitious material suitable for embedding within the core of concrete structures prior to curing. The objective of this research is to verify the feasibility of stress monitoring for concrete materials using an array of cement-based stress/strain sensors that have been developed using the magnetic sensing property of an embedded microwire in a cement-based composite. Test results for microwire-based sensors and gauge sensors are compared. The strain sensitivity and their linearity are investigated through experimental testing under compressive loadings. Sensors made of these materials can be designed to satisfy specific needs and reduce costs in the production of sensor aggregates with improved coupling performance, thus avoiding any disturbance to the stress state.

5.
Sensors (Basel) ; 14(11): 19963-78, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25347582

ABSTRACT

A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 µs/MPa, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...