Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(37): 20208-20213, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37677089

ABSTRACT

Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface sites from the underlying bulk material under applied potential in the presence of an electrolyte layer. Here, we demonstrate that operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) is a powerful spectroscopic method which offers critical surface chemistry insights in CO2 electroreduction with sub-electronvolt energy resolution using hard X-rays. Combined with the high surface area-to-volume ratio of 5 nm copper nanoparticles, operando HERFD-XAS allows us to observe with clear evidence the breaking of chemical bonds between the ligands and the Cu surface as part of the ligand desorption process occurring under electrochemical potentials relevant for the CO2 reduction reaction (CO2RR). In addition, the dynamic evolution of oxidation state and coordination number throughout the operation of the nanocatalyst was continuously tracked. With these results in hand, undercoordinated metallic copper nanograins are proposed to be the real active sites in the CO2RR. This work emphasizes the importance of HERFD-XAS compared to routine XAS in catalyst characterization and mechanism exploration, especially in the complicated electrochemical CO2RR.

2.
J Am Chem Soc ; 145(12): 6648-6657, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36939571

ABSTRACT

Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...