Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pediatr Otorhinolaryngol ; 128: 109730, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31634651

ABSTRACT

OBJECTIVES: Surgical simulation models have been shown to improve surgical skill and confidence for surgical residents before real life procedures. Surgical simulators can be similarly applied in undergraduate medical education as a tool to introduce students to the field of otolaryngology. METHODS: Ear models were created using 3D printing and high-performance silicone. Twenty medical students participated in a slide presentation and a myringotomy tube simulation station, each completing a pre- and post-survey using a 5-point Likert scale. RESULTS: A previously validated 3D myringotomy simulator was used. Twenty medical student volunteers participated in the simulation including 14 first-year and 6 s-year medical students. None of the participating students reported observing myringotomy and placement of tympanostomy tubes before the session. Medical student participants rated their knowledge of the steps of the procedure and where to insert the tympanostomy tube at 2 (2 = disagree) or below with a mean of 1.35 SD = 0.47 and 1.2 SD = 0.41 respectively. At the completion of the educational session, the medical students rated their knowledge of the steps of the procedure as significantly improved at 4.45 SD = 0.6 (p = 0.00001). DISCUSSION: We found that medical students with no prior exposure to ear anatomy or surgical training were able to use the simulator as an introduction to the specialty. There was a perceived improvement in their medical knowledge and basics of a procedural skill. CONCLUSION: Medical schools can provide an inexpensive, safe, procedural practice tool using 3D printing as an introduction for students interested in surgical procedures.


Subject(s)
Computer Simulation , Middle Ear Ventilation/education , Otolaryngology/education , Printing, Three-Dimensional , Students, Medical , Clinical Competence , Educational Measurement , Humans , Models, Anatomic
2.
Biomed Opt Express ; 7(4): 1445-57, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446667

ABSTRACT

Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky's classification of tonsillar hypertrophy as well as intraoperative volume estimations.

SELECTION OF CITATIONS
SEARCH DETAIL
...