Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-36061332

ABSTRACT

Academic conferences are integral to the dissemination of novel research findings and discussion of pioneering ideas across all postsecondary disciplines. For some participants, these environments are spaces to develop new collaborations, research projects, and social bonds; however, for others, conferences can be a place of marginalization and outright hostility. To assess how diverse individuals experience conference spaces, we interpreted results from a conference climate survey filled out by 198 of 482 registrants of the Society for the Advancement of Biology Education Research (SABER) West 2021 conference. Analysis of the survey data was conducted by six biology education researchers, who in addition to raising conference participant voices, provide insights, and next steps whose implementation can promote greater participant equity, representation, and engagement in future science, technology, engineering, and math (STEM) education conferences specifically and potentially all academic conference spaces more broadly.

2.
Microbiology (Reading) ; 160(Pt 12): 2732-2744, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25253612

ABSTRACT

The type II protein secretion (T2S) system of Legionella pneumophila secretes over 25 proteins, including novel proteins that have no similarity to proteins of known function. T2S is also critical for the ability of L. pneumophila to grow within its natural amoebal hosts, including Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria lovaniensis. Thus, T2S has an important role in the natural history of legionnaires' disease. Our previous work demonstrated that the novel T2S substrate NttA promotes intracellular infection of A. castellanii, whereas the secreted RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all promote infection of H. vermiformis and N. lovaniensis. In this study, we determined that another novel T2S substrate that is specific to Legionella, designated NttC, is unique in being required for intracellular infection of H. vermiformis but not for infection of N. lovaniensis or A. castellanii. Expanding our repertoire of amoebal hosts, we determined that Willaertia magna is susceptible to infection by L. pneumophila strains 130b, Philadelphia-1 and Paris. Furthermore, T2S and, more specifically, NttA, NttC and PlaC were required for infection of W. magna. Taken together, these data demonstrate that the T2S system of L. pneumophila is critical for infection of at least four types of aquatic amoebae and that the importance of the individual T2S substrates varies in a host cell-specific fashion. Finally, it is now clear that novel T2S-dependent proteins that are specific to the genus Legionella are particularly important for L. pneumophila infection of key, environmental hosts.


Subject(s)
Bacterial Proteins/metabolism , Hartmannella/microbiology , Legionella pneumophila/physiology , Schizopyrenida/microbiology , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Secretion Systems , Legionella pneumophila/metabolism , Virulence Factors/genetics
3.
Infect Immun ; 81(5): 1399-410, 2013 May.
Article in English | MEDLINE | ID: mdl-23429532

ABSTRACT

Type II protein secretion (T2S) by Legionella pneumophila is required for intracellular infection of host cells, including macrophages and the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Previous proteomic analysis revealed that T2S by L. pneumophila 130b mediates the export of >25 proteins, including several that appeared to be novel. Following confirmation that they are unlike known proteins, T2S substrates NttA, NttB, and LegP were targeted for mutation. nttA mutants were impaired for intracellular multiplication in A. castellanii but not H. vermiformis or macrophages, suggesting that novel exoproteins which are specific to Legionella are especially important for infection. Because the importance of NttA was host cell dependent, we examined a panel of T2S substrate mutants that had not been tested before in more than one amoeba. As a result, RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all proved to be required for optimal intracellular multiplication in H. vermiformis but not A. castellanii. Further examination of an lspF mutant lacking the T2S apparatus documented that T2S is also critical for infection of the amoeba Naegleria lovaniensis. Mutants lacking SrnA, PlaC, or ProA, but not those deficient for NttA, were defective in N. lovaniensis. Based upon analysis of a double mutant lacking PlaC and ProA, the role of ProA in H. vermiformis was connected to its ability to activate PlaC, whereas in N. lovaniensis, ProA appeared to have multiple functions. Together, these data document that the T2S system exports multiple effectors, including a novel one, which contribute in different ways to the broad host range of L. pneumophila.


Subject(s)
Acanthamoeba castellanii/microbiology , Bacterial Proteins/metabolism , Hartmannella/microbiology , Legionella pneumophila/metabolism , Naegleria/microbiology , Blotting, Southern , DNA, Bacterial/analysis , Humans , Legionella pneumophila/genetics , Legionella pneumophila/growth & development , Macrophages/microbiology , RNA, Bacterial/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
4.
J Chem Ecol ; 30(5): 1001-34, 2004 May.
Article in English | MEDLINE | ID: mdl-15274445

ABSTRACT

Amaranthus hypochondriacus is a C4 pseudocereal crop capable of producing reasonable grain yields in adverse environmental conditions that limit cereal performance. It accumulates trypsin inhibitors and alpha-amylase inhibitors in seeds and leaves that are considered to act as insect feeding deterrents. Foliar trypsin and alpha-amylase inhibitors also accumulate by treatment with exogenous jasmonic acid (JA) in controlled laboratory conditions. Three field experiments were performed in successive years to test if two nonphytotoxic dosages of JA were capable of inducing inhibitor activity in A. hypochondriacus in agronomical settings, and if this induced response reduced insect herbivory and insect abundance in foliage and seed heads. The performance of JA-treated plants was compared to insecticide-treated plants and untreated controls. The effect of exogenous JA on the foliar levels of six additional putatively defence proteins was also evaluated. Possible adverse effects of JA induction on productivity were evaluated by measuring grain yield, seed protein content, and germination efficiency. The results present a complex pattern and were not consistent from year to year. To some extent, the yearly variability observed could have been consequence of growth under drought versus nondrought conditions. In a drought year, JA-treated plants had lower levels of insect herbivory-derived damage in apical leaves and panicle than control plants, whereas in nondrought years, there was an inconsistent effect on aphids, with no effect on lepidopteran larvae. JA treatments reduced the size of the insect community in seed heads. The effect varied with year. Exogenous JA did not adversely affect productivity, and in the absence of drought stress, the higher dosage enhanced grain yield. Induction of defensive proteins by JA, although sporadic, was more effective in nondrought conditions. The patterns of foliar protein accumulation observed suggest that they may be part of a constitutive, rather than inducible, chemical defense mechanism that is developmentally regulated and critically dependent on the environment. The results emphasize the difficulties that are often encountered when evaluating the performance of chemical elicitors of induced resistance in field settings.


Subject(s)
Amaranthus/drug effects , Cyclopentanes/pharmacology , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Seeds/drug effects , Amaranthus/growth & development , Animals , Aphids/classification , Aphids/physiology , Environment , Germination/drug effects , Germination/physiology , Oxylipins , Plant Growth Regulators/physiology , Plant Leaves/physiology , Plant Proteins/metabolism , Seeds/physiology , Trypsin Inhibitors/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...