Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Microbiol Spectr ; : e0381623, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874407

ABSTRACT

Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE: We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.

2.
Environ Entomol ; 53(3): 364-373, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38632970

ABSTRACT

Implementation of augmentative biological control requires estimates of parasitoid dispersal from the release point to determine appropriate release density, spacing, and timing. This study evaluated the movement patterns of Fopius arisanus Sonan (Hymenoptera: Braconidae) parasitoids, which have historically been used to control invasive tephritid fruit flies. The wasps were released from the central point, and dispersal was monitored over time using parasitism in sentinel fruit and trap captures at 40 points radiating out from the center (15-240 m). The releases were conducted 4 times during June, July, September, and November 2006. The data showed that there were large declines in dispersal by distance. Parasitism was greatest closest to the release point, within 30 m. Parasitism was also greatest within the first 24 h of the release. After 1 wk, parasitism decreased from 41% to 1.5% within 30 m. These data correlated strongly with trap capture data, which also showed that parasitoid movement favored the SE region of our release site, roughly corresponding to the overall prevailing winds. Wind speed, relative humidity, and temperature all affected parasitoid movement during our trial, indicating the complex environmental factors that can affect release success. This is the first report of dispersal metrics for F. arisanus. Our findings are in agreement with other similar studies on braconid movement generally and suggest that frequent, high-density releases are most effective since the dispersal of F. arisanus is limited and retention in the environment is low. We discuss our results in the context of international augmentative biological control release programs.


Subject(s)
Animal Distribution , Carica , Pest Control, Biological , Wasps , Animals , Wasps/physiology , Host-Parasite Interactions , Tephritidae/parasitology , Tephritidae/physiology
3.
BMJ Glob Health ; 9(3)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548342

ABSTRACT

BACKGROUND: Global tuberculosis (TB) drug resistance (DR) surveillance focuses on rifampicin. We examined the potential of public and surveillance Mycobacterium tuberculosis (Mtb) whole-genome sequencing (WGS) data, to generate expanded country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. METHODS: We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to 12 drugs and bias-corrected for model performance, outbreak sampling and rifampicin resistance oversampling. Validation leveraged a national DR survey conducted in South Africa. RESULTS: Mtb isolates from 29 countries (n=19 149) met sequence quality criteria. Global marginal genotypic resistance among mono-resistant TB estimates overlapped with the South African DR survey, except for isoniazid, ethionamide and second-line injectables, which were underestimated (n=3134). Among multidrug resistant (MDR) TB (n=268), estimates overlapped for the fluoroquinolones but overestimated other drugs. Globally pooled mono-resistance to isoniazid was 10.9% (95% CI: 10.2-11.7%, n=14 012). Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% (0.1-11%), n=111 and India 2.8% (0.08-9.4%), n=114). Given the recent interest in drugs enhancing ethionamide activity and their expected activity against isolates with resistance discordance between isoniazid and ethionamide, we measured this rate and found it to be high at 74.4% (IQR: 64.5-79.7%) of isoniazid-resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3964). CONCLUSIONS: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics, but public WGS data demonstrates oversampling of isolates with higher resistance levels than MDR. Nevertheless, our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug-susceptible TB in South Asia and indicate underutilisation of ethionamide in MDR treatment.


Subject(s)
Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Isoniazid/therapeutic use , Ethionamide/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Genomics , Microbial Sensitivity Tests , Machine Learning
4.
PLoS Comput Biol ; 19(7): e1010770, 2023 07.
Article in English | MEDLINE | ID: mdl-37471455

ABSTRACT

While blood gene signatures have shown promise in tuberculosis (TB) diagnosis and treatment monitoring, most signatures derived from a single cohort may be insufficient to capture TB heterogeneity in populations and individuals. Here we report a new generalized approach combining a network-based meta-analysis with machine-learning modeling to leverage the power of heterogeneity among studies. The transcriptome datasets from 57 studies (37 TB and 20 viral infections) across demographics and TB disease states were used for gene signature discovery and model training and validation. The network-based meta-analysis identified a common 45-gene signature specific to active TB disease across studies. Two optimized random forest regression models, using the full or partial 45-gene signature, were then established to model the continuum from Mycobacterium tuberculosis infection to disease and treatment response. In model validation, using pooled multi-cohort datasets to mimic the real-world setting, the model provides robust predictive performance for incipient to active TB risk over a 2.5-year period with an AUROC of 0.85, 74.2% sensitivity, and 78.3% specificity, which approximates the minimum criteria (>75% sensitivity and >75% specificity) within the WHO target product profile for prediction of progression to TB. Moreover, the model strongly discriminates active TB from viral infection (AUROC 0.93, 95% CI 0.91-0.94). For treatment monitoring, the TB scores generated by the model statistically correlate with treatment responses over time and were predictive, even before treatment initiation, of standard treatment clinical outcomes. We demonstrate an end-to-end gene signature model development scheme that considers heterogeneity for TB risk estimation and treatment monitoring.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/genetics , Transcriptome/genetics , Treatment Outcome , Disease Progression
5.
Proc Natl Acad Sci U S A ; 120(28): e2301394120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399390

ABSTRACT

Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Phase Variation , Genomics , Adaptation, Physiological/genetics , Virulence/genetics , Phylogeny , Genome, Bacterial
6.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37352142

ABSTRACT

Pathogenic microorganisms are in a perpetual struggle for survival in changing host environments, where host pressures necessitate changes in pathogen virulence, antibiotic resistance, or transmissibility. The genetic basis of phenotypic adaptation by pathogens is difficult to study in vivo. In this work, we develop a phylogenetic method to detect genetic dependencies that promote pathogen adaptation using 31,428 in vivo sampled Mycobacterium tuberculosis genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. We find that dependencies between mutations are enriched in antigenic and antibiotic resistance functions and discover 23 mutations that potentiate the development of antibiotic resistance. Between 11% and 92% of resistant strains harbor a dependent mutation acquired after a resistance-conferring variant. We demonstrate the pervasiveness of genetic dependency in adaptation of naturally evolving populations and the utility of the proposed computational approach.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , Phylogeny , Mutation , Virulence , Microbial Sensitivity Tests
7.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36794911

ABSTRACT

SUMMARY: The BioPlex project has created two proteome scale, cell-line-specific protein-protein interaction (PPI) networks: the first in 293T cells, including 120k interactions among 15k proteins; and the second in HCT116 cells, including 70k interactions between 10k proteins. Here, we describe programmatic access to the BioPlex PPI networks and integration with related resources from within R and Python. Besides PPI networks for 293T and HCT116 cells, this includes access to CORUM protein complex data, PFAM protein domain data, PDB protein structures, and transcriptome and proteome data for the two cell lines. The implemented functionality serves as a basis for integrative downstream analysis of BioPlex PPI data with domain-specific R and Python packages, including efficient execution of maximum scoring sub-network analysis, protein domain-domain association analysis, mapping of PPIs onto 3D protein structures and analysis of BioPlex PPIs at the interface of transcriptomic and proteomic data. AVAILABILITY AND IMPLEMENTATION: The BioPlex R package is available from Bioconductor (bioconductor.org/packages/BioPlex), and the BioPlex Python package is available from PyPI (pypi.org/project/bioplexpy). Applications and downstream analyses are available from GitHub (github.com/ccb-hms/BioPlexAnalysis).


Subject(s)
Proteome , Software , Humans , Proteomics , Protein Interaction Maps , Transcriptome
8.
Bioinformatics ; 38(7): 1781-1787, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35020793

ABSTRACT

MOTIVATION: Short-read whole-genome sequencing (WGS) is a vital tool for clinical applications and basic research. Genetic divergence from the reference genome, repetitive sequences and sequencing bias reduces the performance of variant calling using short-read alignment, but the loss in recall and specificity has not been adequately characterized. To benchmark short-read variant calling, we used 36 diverse clinical Mycobacterium tuberculosis (Mtb) isolates dually sequenced with Illumina short-reads and PacBio long-reads. We systematically studied the short-read variant calling accuracy and the influence of sequence uniqueness, reference bias and GC content. RESULTS: Reference-based Illumina variant calling demonstrated a maximum recall of 89.0% and minimum precision of 98.5% across parameters evaluated. The approach that maximized variant recall while still maintaining high precision (<99%) was tuning the mapping quality filtering threshold, i.e. confidence of the read mapping (recall = 85.8%, precision = 99.1%, MQ ≥ 40). Additional masking of repetitive sequence content is an alternative conservative approach to variant calling that increases precision at cost to recall (recall = 70.2%, precision = 99.6%, MQ ≥ 40). Of the genomic positions typically excluded for Mtb, 68% are accurately called using Illumina WGS including 52/168 PE/PPE genes (34.5%). From these results, we present a refined list of low confidence regions across the Mtb genome, which we found to frequently overlap with regions with structural variation, low sequence uniqueness and low sequencing coverage. Our benchmarking results have broad implications for the use of WGS in the study of Mtb biology, inference of transmission in public health surveillance systems and more generally for WGS applications in other organisms. AVAILABILITY AND IMPLEMENTATION: All relevant code is available at https://github.com/farhat-lab/mtb-illumina-wgs-evaluation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Benchmarking , Mycobacterium tuberculosis/genetics , Software , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
9.
Nat Commun ; 12(1): 6099, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671035

ABSTRACT

Mycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing an in-depth analysis of the ancient Indo-Oceanic Lineage 1 and the modern Central Asian Lineage 3, and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4939 pan-susceptible strains, and find 30 new genetically distinct clades that we validate in a dataset of 4645 independent isolates. We find a consistent geographically restricted or unrestricted pattern for 20 groups, including three groups of Lineage 1. The distribution of terminal branch lengths across the M. tuberculosis phylogeny supports the hypothesis of a higher transmissibility of Lineages 2 and 4, in comparison with Lineages 3 and 1, on a global scale. We define an expanded barcode of 95 single nucleotide substitutions that allows rapid identification of 69 M. tuberculosis sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the M. tuberculosis phylogeny and biogeography.


Subject(s)
Mycobacterium tuberculosis/classification , Phylogeny , Tuberculosis/transmission , DNA Barcoding, Taxonomic , Evolution, Molecular , Genome, Bacterial/genetics , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phylogeography , Polymorphism, Single Nucleotide , Software , Tuberculosis/microbiology
10.
Antimicrob Agents Chemother ; 65(11): e0116421, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34460306

ABSTRACT

Antibiotic resistance among bacterial pathogens poses a major global health threat. Mycobacterium tuberculosis complex (MTBC) is estimated to have the highest resistance rates of any pathogen globally. Given the low growth rate and the need for a biosafety level 3 laboratory, the only realistic avenue to scale up drug susceptibility testing (DST) for this pathogen is to rely on genotypic techniques. This raises the fundamental question of whether a mutation is a reliable surrogate for phenotypic resistance or whether the presence of a second mutation can completely counteract its effect, resulting in major diagnostic errors (i.e., systematic false resistance results). To date, such epistatic interactions have only been reported for streptomycin that is now rarely used. By analyzing more than 31,000 MTBC genomes, we demonstrated that the eis C-14T promoter mutation, which is interrogated by several genotypic DST assays endorsed by the World Health Organization, cannot confer resistance to amikacin and kanamycin if it coincides with loss-of-function (LoF) mutations in the coding region of eis. To our knowledge, this represents the first definitive example of antibiotic reversion in MTBC. Moreover, we raise the possibility that mmpR (Rv0678) mutations are not valid markers of resistance to bedaquiline and clofazimine if these coincide with an LoF mutation in the efflux pump encoded by mmpS5 (Rv0677c) and mmpL5 (Rv0676c).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Amikacin/pharmacology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Clofazimine/pharmacology , Diarylquinolines , Drug Resistance, Multiple, Bacterial/genetics , Epistasis, Genetic , Humans , Kanamycin/pharmacology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics
11.
Genome Med ; 13(1): 138, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34461978

ABSTRACT

BACKGROUND: Multidrug-resistant Mycobacterium tuberculosis (Mtb) is a significant global public health threat. Genotypic resistance prediction from Mtb DNA sequences offers an alternative to laboratory-based drug-susceptibility testing. User-friendly and accurate resistance prediction tools are needed to enable public health and clinical practitioners to rapidly diagnose resistance and inform treatment regimens. RESULTS: We present Translational Genomics platform for Tuberculosis (GenTB), a free and open web-based application to predict antibiotic resistance from next-generation sequence data. The user can choose between two potential predictors, a Random Forest (RF) classifier and a Wide and Deep Neural Network (WDNN) to predict phenotypic resistance to 13 and 10 anti-tuberculosis drugs, respectively. We benchmark GenTB's predictive performance along with leading TB resistance prediction tools (Mykrobe and TB-Profiler) using a ground truth dataset of 20,408 isolates with laboratory-based drug susceptibility data. All four tools reliably predicted resistance to first-line tuberculosis drugs but had varying performance for second-line drugs. The mean sensitivities for GenTB-RF and GenTB-WDNN across the nine shared drugs were 77.6% (95% CI 76.6-78.5%) and 75.4% (95% CI 74.5-76.4%), respectively, and marginally higher than the sensitivities of TB-Profiler at 74.4% (95% CI 73.4-75.3%) and Mykrobe at 71.9% (95% CI 70.9-72.9%). The higher sensitivities were at an expense of ≤ 1.5% lower specificity: Mykrobe 97.6% (95% CI 97.5-97.7%), TB-Profiler 96.9% (95% CI 96.7 to 97.0%), GenTB-WDNN 96.2% (95% CI 96.0 to 96.4%), and GenTB-RF 96.1% (95% CI 96.0 to 96.3%). Averaged across the four tools, genotypic resistance sensitivity was 11% and 9% lower for isoniazid and rifampicin respectively, on isolates sequenced at low depth (< 10× across 95% of the genome) emphasizing the need to quality control input sequence data before prediction. We discuss differences between tools in reporting results to the user including variants underlying the resistance calls and any novel or indeterminate variants CONCLUSIONS: GenTB is an easy-to-use online tool to rapidly and accurately predict resistance to anti-tuberculosis drugs. GenTB can be accessed online at https://gentb.hms.harvard.edu , and the source code is available at https://github.com/farhat-lab/gentb-site .


Subject(s)
Computational Biology/methods , Drug Resistance, Bacterial , Machine Learning , Software , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Databases, Genetic , Genome, Bacterial , Genomics/methods , Humans , Microbial Sensitivity Tests , ROC Curve , Reproducibility of Results , Web Browser , Workflow
12.
Pest Manag Sci ; 77(12): 5439-5444, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34331843

ABSTRACT

BACKGROUND: Control of Zeugodacus cucurbitae, a serious agricultural pest worldwide, often includes or is dependent on the use of spinosad-based insecticides. This is especially the case in Hawaii, where GF-120, a protein bait containing spinosad as the active ingredient, has been in use as a key integrated pest management (IPM) tool against this Tephritid for the last two decades. Here, we report on resistance to spinosad [resistance ratios (RRs) and median lethal concentration (LC50 )] in Hawaii's populations of Z. cucurbitae. RESULTS: High resistance was found in populations from three farms on Oahu (RR = 102-303; LC50  = 191-567 mg L-1 ) and in a population from Maui (RR = 8.50; LC50  = 15.9 mg L-1 ). These will be problematic for control given that the most concentrated dilution ratio on the GF-120 label is 96 mg L-1 of spinosad (1 part GF-120 to 1.5 parts water). Background resistance in a naïve wild population from the Island of Hawaii (RR = 2.73; LC50  = 5.1 mg L-1 ) was relatively low compared with a spinosad-susceptible laboratory colony (LC50  = 1.87 mg L-1 ). Resistance in the three Oahu and one Maui populations declined over generations in the absence of spinosad but remained elevated in some cases. Moreover, melon flies collected from one of the Oahu farms 1 year after the cessation of spinosad use revealed high persistence of resistance. CONCLUSION: Compared with a 2008 survey of spinosad resistance, our findings indicate a 34-fold increase in resistance on one of the Oahu farms over 9 years. The evolution and persistence of high levels of resistance to spinosad in Z. cucurbitae in Hawaii highlights the need for alternative control tactics, particularly rotation of active ingredients. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cucurbitaceae , Insecticides , Tephritidae , Animals , Drug Combinations , Hawaii , Insecticides/pharmacology , Macrolides/pharmacology
13.
Elife ; 102021 02 01.
Article in English | MEDLINE | ID: mdl-33522489

ABSTRACT

Tuberculosis (TB) is a leading cause of death globally. Understanding the population dynamics of TB's causative agent Mycobacterium tuberculosis complex (Mtbc) in-host is vital for understanding the efficacy of antibiotic treatment. We use longitudinally collected clinical Mtbc isolates that underwent Whole-Genome Sequencing from the sputa of 200 patients to investigate Mtbc diversity during the course of active TB disease after excluding 107 cases suspected of reinfection, mixed infection or contamination. Of the 178/200 patients with persistent clonal infection >2 months, 27 developed new resistance mutations between sampling with 20/27 occurring in patients with pre-existing resistance. Low abundance resistance variants at a purity of ≥19% in the first isolate predict fixation in the subsequent sample. We identify significant in-host variation in 27 genes, including antibiotic resistance genes, metabolic genes and genes known to modulate host innate immunity and confirm several to be under positive selection by assessing phylogenetic convergence across a genetically diverse sample of 20,352 isolates.


Subject(s)
Immunity, Innate/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Drug Resistance, Bacterial/genetics , Genetics, Population , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Phylogeny , Polymorphism, Single Nucleotide , Reinfection/microbiology , Sputum/microbiology , Treatment Failure , Tuberculosis/drug therapy , Whole Genome Sequencing
15.
Sci Rep ; 9(1): 5602, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944370

ABSTRACT

Whole genome sequencing (WGS) can elucidate Mycobacterium tuberculosis (Mtb) transmission patterns but more data is needed to guide its use in high-burden settings. In a household-based TB transmissibility study in Peru, we identified a large MIRU-VNTR Mtb cluster (148 isolates) with a range of resistance phenotypes, and studied host and bacterial factors contributing to its spread. WGS was performed on 61 of the 148 isolates. We compared transmission link inference using epidemiological or genomic data and estimated the dates of emergence of the cluster and antimicrobial drug resistance (DR) acquisition events by generating a time-calibrated phylogeny. Using a set of 12,032 public Mtb genomes, we determined bacterial factors characterizing this cluster and under positive selection in other Mtb lineages. Four of the 61 isolates were distantly related and the remaining 57 isolates diverged ca. 1968 (95%HPD: 1945-1985). Isoniazid resistance arose once and rifampin resistance emerged subsequently at least three times. Emergence of other DR types occurred as recently as within the last year of sampling. We identified five cluster-defining SNPs potentially contributing to transmissibility. In conclusion, clusters (as defined by MIRU-VNTR typing) may be circulating for decades in a high-burden setting. WGS allows for an enhanced understanding of transmission, drug resistance, and bacterial fitness factors.


Subject(s)
Genome, Bacterial/immunology , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/transmission , Adolescent , Adult , Aged , Aged, 80 and over , Antitubercular Agents/pharmacology , Bacterial Typing Techniques/methods , DNA, Bacterial/genetics , Female , Genome, Bacterial/genetics , Genomics/methods , Genotype , Humans , Isoniazid/pharmacology , Male , Middle Aged , Mycobacterium tuberculosis/drug effects , Peru , Polymorphism, Single Nucleotide/genetics , Prevalence , Rifampin/pharmacology , Sequence Analysis, DNA/methods , Tuberculosis, Multidrug-Resistant/drug therapy , Whole Genome Sequencing/methods , Young Adult
16.
PLoS One ; 14(3): e0213337, 2019.
Article in English | MEDLINE | ID: mdl-30849115

ABSTRACT

Male Annihilation Technique (MAT) is a key tool to suppress or eradicate pestiferous tephritid fruit flies for which there exist powerful male lures. In the case of Bactrocera dorsalis (Hendel), a highly invasive and destructive species, current implementations of MAT utilize a combination of the male attractant methyl eugenol (ME) and a toxicant such as spinosad ("SPLAT-MAT-ME") applied at a high density with the goal of attracting and killing an extremely high proportion of males. We conducted direct comparisons of trap captures of marked B. dorsalis males released under three experimental SPLAT-MAT-ME site densities (110, 220, and 440 per km2) near Hilo, Hawaii using both fresh and aged traps to evaluate the effectiveness of varying densities and how weathering of the SPLAT-MAT-ME formulation influenced any density effects observed. Counterintuitively, we observed decreasing effectiveness (percent kill) with increasing application density. We also estimated slightly higher average kill for any given density for weathered grids compared with fresh. Spatial analysis of the recapture patterns of the first trap service per replicate x treatment reveals similar positional effects for all grid densities despite differences in overall percent kill. This study suggests that benefits for control and eradication programs would result from reducing the application density of MAT against B. dorsalis through reduced material use, labor costs, and higher effectiveness. Additional research in areas where MAT programs are currently undertaken would be helpful to corroborate this study's findings.


Subject(s)
Eugenol/pharmacology , Fruit/parasitology , Insect Control , Pheromones/pharmacology , Tephritidae/drug effects , Animals , Anti-Infective Agents/pharmacology , Female , Male
17.
Sci Rep ; 9(1): 2653, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804349

ABSTRACT

Surveillance for invading insect pests is costly and the trapper usually finds the traps empty of the target pest. Since the successful establishment of new pests is an uncommon event, multiple lures placed into one trap might increase the efficiency of the surveillance system. We investigated the effect of the combination of the Tephritidae male lures - trimedlure, cuelure, raspberry ketone and methyl eugenol - on catch of Ceratitis capitata, Zeugodacus cucurbitae, Bactrocera tryoni, B. dorsalis, B. aquilonis and B. tenuifascia in Australia and the USA (not all species are present in each country). The increase in trap density required to offset any reduction in catch due to the presence of lures for other Tephritidae was estimated. The effect of increasing trap density to maintain surveillance sensitivity was modelled for a hypothetical population of B. tryoni males, where the effective sampling area of cuelure traps for this species has been estimated. The 3-way combination significantly reduced the catch of the methyl eugenol-responsive B. dorsalis. Unexpectedly, we found that trimedlure-baited traps that contained methyl eugenol had ×3.1 lower catch of C. capitata than in trimedlure-only-baited traps in Australia, but not in Hawaii where no difference in catch was observed, we cannot satisfactorily explain this result. Based on the data presented here and from previous research, combinations of some male lures for the early detection of tephritid flies appear compatible and where there is any reduction in surveillance sensitivity observed, this can be offset by increasing the density of traps in the area.


Subject(s)
Insect Control/methods , Pheromones , Tephritidae , Animals , Australia , Public Health Surveillance/methods
18.
J Econ Entomol ; 111(3): 1318-1322, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29659892

ABSTRACT

Foraging behavior of wild female melon fly, Bactrocera (Zeugodacus) cucurbitae Coquillett, a worldwide pest of economically important cucurbit crops, was examined through mark and recapture studies in both wild (Kona: dominated by the invasive weed ivy gourd, Coccinea grandis [L.] Voigt [Cucurbitaceae]), and cultivated (Kapoho: dominated by papaya, Carica papaya L. [Caricaceae] orchards) habitats on Hawaii Island. In particular, the extent to which wild melon flies and color-marked F2 females responded to cucumber odor and Solulys yeast hydrolysate laced with ammonium acetate (1%, wt/vol) according to sexual maturity stage and degree of protein hunger was documented. Kona results indicated that more wild and color-marked F2 females responded to cucumber (Cucumis sativus L. [Cucurbitaceae]) odor than to protein odor with the exception of captured wild flies without eggs, which responded similarly to protein bait and cucumber odor. Results with captured wild females and color-marked F2 females in Kapoho suggested a significant preference for cucumber odor over protein odor regardless of whether or not they had eggs in their ovaries with the exception of protein-deprived color-marked F2 females, which responded to both odors in equal numbers. Implications of these new findings based on wild melon flies in natural habitats are discussed with respect to integrated pest management control strategies with protein bait sprays used in Hawaii. The possibility of adding cucurbit volatiles to protein-based baits is discussed.


Subject(s)
Carica/chemistry , Cucurbitaceae/chemistry , Ecosystem , Odorants/analysis , Tephritidae/physiology , Animals , Chemotaxis , Feeding Behavior/drug effects , Female , Hawaii , Plants/metabolism , Yeast, Dried/analysis
19.
Brain Struct Funct ; 223(6): 2589-2607, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29536173

ABSTRACT

A whole-brain network of regions collectively supports the ability to recognize and use objects-the Tool Processing Network. Little is known about how functional interactions within the Tool Processing Network are modulated in a task-dependent manner. We designed an fMRI experiment in which participants were required to either generate object pantomimes or to carry out a picture matching task over the same images of tools, while holding all aspects of stimulus presentation constant across the tasks. The Tool Processing Network was defined with an independent functional localizer, and functional connectivity within the network was measured during the pantomime and picture matching tasks. Relative to tool picture matching, tool pantomiming led to an increase in functional connectivity between ventral stream regions and left parietal and frontal-motor areas; in contrast, the matching task was associated with an increase in functional connectivity among regions in ventral temporo-occipital cortex, and between ventral temporal regions and the left inferior parietal lobule. Graph-theory analyses over the functional connectivity data indicated that the left premotor cortex and left lateral occipital complex were hub-like (exhibited high betweenness centrality) during tool pantomiming, while ventral stream regions (left medial fusiform gyrus and left posterior middle temporal gyrus) were hub-like during the picture matching task. These results demonstrate task-specific modulation of functional interactions among a common set of regions, and indicate dynamic coupling of anatomically remote regions in task-dependent manner.


Subject(s)
Brain Mapping , Brain/physiology , Hand Strength/physiology , Neural Pathways/physiology , Psychomotor Performance/physiology , Adolescent , Brain/diagnostic imaging , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Oxygen , Wrist/innervation , Young Adult
20.
J Anim Ecol ; 87(1): 59-72, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28913925

ABSTRACT

The management of insect pests has long been dominated by the use of chemical insecticides, with the aim of instantaneously killing enough individuals to limit their damage. To minimize unwanted consequences, environmentally friendly approaches have been proposed that utilize biological control and take advantage of intrinsic demographic processes to reduce pest populations. We address the feasibility of a novel pest management strategy based on the release of insects infected with Wolbachia, which causes cytoplasmic incompatibilities in its host population, into a population with a pre-existing Allee effect. We hypothesize that the transient decline in population size caused by a successful invasion of Wolbachia can bring the population below its Allee threshold and, consequently, trigger extinction. We develop a stochastic population model that accounts for Wolbachia-induced cytoplasmic incompatibilities in addition to an Allee effect arising from mating failures at low population densities. Using our model, we identify conditions under which cytoplasmic incompatibilities and Allee effects successfully interact to drive insect pest populations towards extinction. Based on our results, we delineate control strategies based on introductions of Wolbachia-infected insects. We extend this analysis to evaluate control strategies that implement successive introductions of two incompatible Wolbachia strains. Additionally, we consider methods that combine Wolbachia invasion with mating disruption tactics to enhance the pre-existing Allee effect. We demonstrate that Wolbachia-induced cytoplasmic incompatibility and the Allee effect act independently from one another: the Allee effect does not modify the Wolbachia invasion threshold, and cytoplasmic incompatibilities only have a marginal effect on the Allee threshold. However, the interaction of these two processes can drive even large populations to extinction. The success of this method can be amplified by the introduction of multiple Wolbachia cytotypes as well as the addition of mating disruption. Our study extends the existing literature by proposing the use of Wolbachia introductions to capitalize on pre-existing Allee effects and consequently eradicate insect pests. More generally, it highlights the importance of transient dynamics, and the relevance of manipulating a cascade of destabilizatons for pest management.


Subject(s)
Genetic Fitness , Insecta/physiology , Pest Control, Biological , Wolbachia/physiology , Animals , Insecta/microbiology , Models, Biological , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...