Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37807917

ABSTRACT

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Subject(s)
Ecosystem , Trees , Tropical Climate , Forests , Wood , Droughts , Plant Leaves , Xylem
2.
New Phytol ; 237(3): 766-779, 2023 02.
Article in English | MEDLINE | ID: mdl-36352518

ABSTRACT

Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions. We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits. Nitrogen fixers grew larger with increasing P addition in contrast to non-N fixers, which showed fewer responses in C allocation and P use. Foliar P increased with P addition for both functional types, while P acquisition strategies did not vary among treatments but differed between functional types, with N fixers showing higher root phosphatase activity (RPA) than nonfixers. Growth responses suggest that N fixers are limited by P, but nonfixers may be limited by other resources. However, regardless of limitation, P acquisition traits such as mycorrhizal colonization and RPA were nonplastic across a steep P gradient. Differential limitation among plant functional types has implications for forest succession and earth system models.


Subject(s)
Nitrogen , Trees , Trees/physiology , Phosphorus , Tropical Climate , Forests , Plants , Soil
3.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257904

ABSTRACT

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Subject(s)
Droughts , Plant Leaves , Tropical Climate , Phylogeny , Plant Leaves/physiology , Xylem
5.
Glob Chang Biol ; 28(6): 2081-2094, 2022 03.
Article in English | MEDLINE | ID: mdl-34921474

ABSTRACT

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2  = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.


Subject(s)
Droughts , Ecosystem , Biomass , Forests , Plants , Trees
6.
New Phytol ; 232(1): 148-161, 2021 10.
Article in English | MEDLINE | ID: mdl-34171131

ABSTRACT

Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.


Subject(s)
Trees , Tropical Climate , Forests , Habits , Plant Leaves
7.
Glob Chang Biol ; 26(5): 3122-3133, 2020 05.
Article in English | MEDLINE | ID: mdl-32053250

ABSTRACT

Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.


Subject(s)
Droughts , El Nino-Southern Oscillation , Costa Rica , Forests , Plant Leaves , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...