Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biopolymers ; 110(11): e23333, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31568570

ABSTRACT

The formation of the KRas4B-PDEδ complex activates different signaling pathways required for the development and maintenance of cancer. Previous experimental and theoretical studies have allowed researchers to design an inhibitor of the KRas4B-PDEδ complex, "Deltarasin." This inhibitor binds to the prenyl-binding pocket of PDEδ and subsequently inhibits the proliferation of human pancreatic ductal adenocarcinoma cells that depend on oncogenic KRas4B. Nevertheless, structural and energetic information about the inhibitory effects of Deltarasin on the KRas4B-PDEδ complex are not available. In this study, we explore the properties of Deltarasin in inhibiting the formation of wild-type and mutant KRas4B-PDEδ complexes present in different cell lines expressing mutant RAS genes (G12D, G12C, G12V, G13D, Q61L, and Q61R) using 1.7 µs molecular dynamics (MD) simulations in combination with the MMGBSA approach. Our results revealed the energetic and structural mechanisms that suggest a higher affinity of Deltarasin for PDEδ than the farnesylated HVR. Moreover, Deltarasin exerts another dissociative effect by binding to the protein-protein dimeric interface of wild-type KRas4B-PDEδ, whereas associative and dissociative effects were observed for mutant KRas4B-PDEδ, providing a mechanistic explanation for the inhibitory effects of Deltarasin on different cancer cell lines.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Molecular Dynamics Simulation , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma , Benzimidazoles/pharmacology , Cell Line, Tumor , Humans , Protein Binding/drug effects , Protein Multimerization/drug effects
2.
Neurochem Int ; 120: 213-223, 2018 11.
Article in English | MEDLINE | ID: mdl-30196145

ABSTRACT

Brain specific kinases (BRSKs) are serine/threonine kinases, preferentially expressed in the brain after Embryonic Day 12. Although BRSKs are crucial neuronal development factors and regulation of their enzymatic activity has been widely explored, little is known of their transcriptional regulation. In this work, we show that Neuronal Growth Factor (NGF) increased the expression of Brsk1 in PC12 cells. Furthermore, during neuronal differentiation, Brsk1 mRNA increased through a MAPK-dependent Sp1 activation. To gain further insight into this regulation, we analyzed the transcriptional activity of the Brsk1 promoter in PC12 cells treated with NGF. Initially, we defined the minimal promoter region (-342 to +125 bp) responsive to NGF treatment. This region had multiple Sp1 binding sites, one of which was within a CpG island. In vitro binding assays showed that NGF-induced differentiation increased Sp1 binding to this site and that DNA methylation inhibited Sp1 binding. In vitro methylation of the Brsk1 promoter reduced its transcriptional activity and impaired the NGF effect. To evaluate the participation of DNA methyltransferases in Brsk1 gene regulation, the 5'Aza-dC inhibitor was used. 5'Aza-dC acted synergistically with NGF to promote Brsk1 promoter activity. Accordingly, DNMT3B overexpression abolished the response of the Brsk1 promoter to NGF. Surprisingly, we found Dnmt3b to be a direct target of NGF regulation, via the MAPK pathway. In conclusion, our results provide evidence of a novel mechanism of Brsk1 transcriptional regulation changing the promoter's methylation status, which was incited by the NGF-induced neuronal differentiation process.


Subject(s)
Brain/drug effects , Nerve Growth Factor/pharmacology , Protein Kinases/metabolism , Sp1 Transcription Factor/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Gene Expression Regulation/drug effects , Methylation/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , Rats , Sp1 Transcription Factor/physiology
3.
Exp Parasitol ; 167: 38-42, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27156446

ABSTRACT

It is known that the microtubules (MT) of Entamoeba histolytica trophozoites form an intranuclear mitotic spindle. However, electron microscopy studies and the employment of anti-beta-tubulin (ß-tubulin) antibodies have not exhibited these cytoskeletal structures in the cytoplasm of these parasites. The purpose of this work was to detect ß-tubulin in the cytoplasm of interphasic E. histolytica trophozoites. Activated or non-activated HMI-IMSS-strain E. histolytica trophozoites were used and cultured for 72 h at 37 °C in TYI-S-33 medium, and then these were incubated with the anti-ß-tubulin antibody of E. histolytica. The anti-ß-tubulin antibody reacted with the intranuclear mitotic spindle of E. histolytica-activated trophozoites as control. In contrast, in non-activated interphasic parasites, anti-ß-tubulin antibody reacted with diverse puntiform structures in the cytoplasm and with ring-shaped structures localized in the cytoplasm, cellular membrane and endocytic stomas. In this work, for the first time, the presence of ß-tubulin is shown in the cytoplasm of E. histolytica trophozoites.


Subject(s)
Entamoeba histolytica/chemistry , Tubulin/analysis , Animals , Antibodies, Protozoan/immunology , Cell Membrane/chemistry , Cytoplasm/chemistry , Entamoeba histolytica/growth & development , Entamoeba histolytica/ultrastructure , Immunoblotting , Interphase , Mice , Microscopy, Fluorescence , Microtubules/chemistry , Spindle Apparatus/ultrastructure , Trophozoites/chemistry , Tubulin/chemistry , Tubulin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...