Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36286131

ABSTRACT

Gelatin methacryloyl (GelMA) hydrogels have been widely used for different biomedical applications due to their tunable physical characteristics and appropriate biological properties. In addition, GelMA could be modified with the addition of functional groups providing inherent antibacterial capabilities. Here, GelMA-based hydrogels were developed through the combination of a GelMA unmodified and modified polymer with quaternary ammonium groups (GelMAQ). The GelMAQ was synthesized from GelMA with a low degree of substitution of methacrylamide groups (DSMA) and grafted with glycidyltrimethylammonium chloride in the free amine groups of the lysine moieties present in the original gelatin. GelMAs with high DSMA and GelMAQ were combined 50/50% or 25/75% (w/w), respectively, and compared to controls GelMA and GelMA with added chlorhexidine (CHX) at 0.2%. The different hydrogels were characterized using 1H-NMR spectroscopy and swelling behavior and tested in (1) Porphyromonas gingivalis to evaluate their antibacterial properties and (2) human gingival fibroblast to evaluate their cell biocompatibility and regenerative properties. GelMA/GelMAQ 25/75% showed good antibacterial properties but also excellent biocompatibility and regenerative properties toward human fibroblasts in the wound healing assay. Taken together, these results suggest that the modification of GelMA with quaternary groups could facilitate periodontal tissue regeneration, with good biocompatibility and added antibacterial properties.

2.
Soft Matter ; 16(33): 7727-7738, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32735003

ABSTRACT

We have studied the combined influence of pH and ionic strength on the properties of brushes of a weak polyion, poly(acrylic acid), in conditions of grafting density close to the mushroom-brush crossover. By combining atomic force microscopy AFM and quartz crystal microbalance, we show that at low ionic strengths the conformational change of grafted polyions is non-monotonic with increasing pH due to the counterintuitive variation of the ionization degree. Thus, reentrant swelling of the polymer chains is observed with increasing pH. This effect is more important at low polymer grafting densities, when it is accompanied by in-plane heterogeneous distribution at intermediate pH values. In addition, we observed self-assembly on the polymer brush (formation of holes and islands) at pH values below pKa, due to the short-range attractive interaction between uncharged grafted chains. The sensitivity of the ionization of grafted chains to the physicochemical environment was also studied by measuring the interaction force between a silica tip and polymer brushes by atomic force microscopy. The dependence of the ionization of polyions on the presence of the tip points toward important charge regulation effects, in particular at pH values corresponding to partial ionization of the polyion.

3.
Macromol Biosci ; 19(10): e1900179, 2019 10.
Article in English | MEDLINE | ID: mdl-31490621

ABSTRACT

Magnesium-based implants present several advantages for clinical applications, in particular due to their biocompatibility and degradability. However, degradation products can affect negatively the cell activity. In this work, a combined coating strategy to control the implant degradation and cell regulation processes is evaluated, including plasma electrolytic oxidation (PEO) that produces a 13 µm-thick Ca, P, and Si containing ceramic coating with surface porosity, and breath figures (BF) approach that produces a porous polymeric poly(ε-caprolactone) surface. The degradation of PCL-PEO-coated Mg hierarchical scaffold can be tailored to promote cell adhesion and proliferation into the porous structure. As a result, cell culture can colonize the inner PEO-ceramic coating structure where higher amount of bioelements are present. The Mg/PEO/PCL/BF scaffolds exhibit equally good or better premyoblast cell adhesion and proliferation compared with Ti CP control. The biological behavior of this new hierarchical functionalized scaffold can improve the implantation success in bone and cardiovascular clinical applications.


Subject(s)
Absorbable Implants , Alloys , Ceramics , Coated Materials, Biocompatible , Materials Testing , Polyesters , Alloys/chemistry , Alloys/pharmacology , Animals , Calcium/chemistry , Calcium/pharmacology , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Ceramics/chemistry , Ceramics/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Mice , Polyesters/chemistry , Polyesters/pharmacology , Porosity
4.
J Colloid Interface Sci ; 513: 820-830, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29222981

ABSTRACT

We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 µm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 µm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/growth & development , Coated Materials, Biocompatible/pharmacology , Endothelium, Vascular/cytology , Polymers/chemistry , Polymers/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacterial Adhesion , Cell Proliferation/drug effects , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Endothelium, Vascular/drug effects , Mice , Microbial Sensitivity Tests , Polyethylene Glycols/chemistry , Porosity , Surface Properties
5.
ACS Appl Mater Interfaces ; 9(51): 44270-44280, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29131567

ABSTRACT

We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 µm) in comparison with mammalian cells (above 20 µm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 µm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.


Subject(s)
Anti-Bacterial Agents/chemistry , Animals , Bacteria , Cell Size , Polymers , Polystyrenes , Porosity
6.
ACS Appl Mater Interfaces ; 9(42): 37454-37462, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28934545

ABSTRACT

We describe herein a novel strategy for the fabrication of efficient 3D printed antibacterial scaffolds. For this purpose, both the surface topography as well as the chemical composition of 3D scaffolds fabricated by additive manufacturing were modified. The scaffolds were fabricated by fused deposition modeling (FDM) using high-impact polystyrene (HIPS) filaments. The surface of the objects was then topographically modified providing materials with porous surfaces by means of the Breath Figures approach. The strategy involves the immersion of the scaffold in a polymer solution during a precise period of time. This approach permitted the modification of the pore size varying the immersion time as well as the solution concentration. Moreover, by using polymer blend solutions of polystyrene and polystyrene-b-poly(acrylic acid) (PS23-b-PAA18) and a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS42-b-PDMAEMAQ17), the scaffolds were simultaneously chemically modified. The surfaces were characterized by scanning electron microscopy and infrared spectroscopy. Finally, the biological response toward bacteria was explored. Porous surfaces prepared using quaternized PDMAEMA as well as those prepared using PAA confer antimicrobial activity to the films, i.e., were able to kill on contact Staphylococcus aureus employed as model bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Polymers , Porosity , Staphylococcus aureus , Tissue Scaffolds
7.
ACS Appl Mater Interfaces ; 9(4): 4184-4191, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28035806

ABSTRACT

We report on the fabrication of a microfluidic device in which the reservoir contains a porous surface with enzymatic catalytic activity provided by the reversible immobilization of horseradish peroxidase onto micrometer size pores. The porous functional reservoir was obtained by the Breath Figures approach by casting in a moist environment a solution containing a mixture of high molecular weight polystyrene (HPS) and a poly(styrene-co-cyclodextrin based styrene) (P(S-co-SCD)) statistical copolymer. The pores enriched in CD were employed to immobilize horseradish peroxidase (previously modified with adamantane) by host-guest interactions (HRP-Ada). These surfaces exhibit catalytic activity that remains stable during several reaction cycles. Moreover, the porous platforms could be recovered by using free water-soluble ß-CD with detergents. An excess of ß-CD/TritonX100 in solution disrupts the interactions between HRP-Ada and the CD-modified substrate thus allowing us to recover the employed enzyme and reuse the platform.

8.
Materials (Basel) ; 9(6)2016 May 31.
Article in English | MEDLINE | ID: mdl-28773555

ABSTRACT

We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene-b-poly(dimethylaminoethyl methacrylate) are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle.

SELECTION OF CITATIONS
SEARCH DETAIL
...