Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 25(1): 93-104, 2020 01.
Article in English | MEDLINE | ID: mdl-31834618

ABSTRACT

Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C- 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.


Subject(s)
Fish Diseases/microbiology , Liver/microbiology , Piscirickettsia/pathogenicity , Stress, Physiological/physiology , Temperature , Animals , Fishes , Liver/metabolism , Perciformes , Piscirickettsia/metabolism
2.
Fish Shellfish Immunol ; 90: 1-11, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31015063

ABSTRACT

Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/µL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.


Subject(s)
Adaptive Immunity , Francisella/physiology , Head Kidney/immunology , Immunity, Innate , Perciformes/immunology , Spleen/immunology , Animals , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Perciformes/microbiology
3.
Article in English | MEDLINE | ID: mdl-30710691

ABSTRACT

Francisellosis is a disease produced by Francisella spp. which affects farmed fish. Eleginops maclovinus specimens can be caught close to salmon farming centers, feeding on un-consumed pellet, making the transmission of pathogens such as Francisella noatunensis possible. The aim of this study was to evaluate the effect of F. noatunensis on liver intermediary metabolism in E. maclovinus. 144 fish were injected intraperitoneally with F. noatunensis at a low dose LD (1 × 101 cells/µL), medium dose MD (1 × 105 cells/µL), high dose HD (1 × 1010 cells/µL), or with culture medium C (control), and sampled at 1, 3, 7, 14, 21 and 28 days post injection (dpi). No mortality was recorded during the experimental period, but there was a marked metabolic response in fish injected with high doses. Metabolites in plasma were lowest in the high bacterial dose. Cortisol levels were highest at day 7 in the high dose and then decreased from day 14 until the end of the study. Liver enzymes showed a similar pattern to plasma metabolites, with decreased enzymatic activity, mostly with the high bacteria dose. PK was the exception, with increased enzymatic activity in a dose-dependent manner over time. Liver metabolites were highly variable, except in the high bacterial dose where variability and total levels decreased significantly. Our results show that fish infection with F. noatunensis induces a clear stress response, especially with at the highest dose, shifting intermediary metabolism towards mobilization of energy and suggesting that E. maclovinus detects experimental infection of F. noatunensis as a stressor, which it is dependent on the bacterial dose.


Subject(s)
Fish Diseases/metabolism , Francisella/pathogenicity , Gram-Negative Bacterial Infections/metabolism , Liver/metabolism , Liver/pathology , Perciformes/metabolism , Stress, Physiological , Animals , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Injections, Intraperitoneal , Liver/microbiology , Perciformes/microbiology
4.
Article in English | MEDLINE | ID: mdl-30772484

ABSTRACT

Variations in the mRNA expression of hepatic and muscle genes that are related to calcium signaling were analyzed by real-time qPCR in farmed Atlantic salmon (Salmo salar L. 1758) to determine changes in expression between parr and smolt stages. These organs were selected due to their close relationship with calcium signaling and metabolism (e.g., glycolysis, oxidative phosphorylation, muscle contraction). Differential expression between smolt and parr specimens and between organs was observed. Compared to parr specimens, smolts exhibited upregulated expression of the calcitonin receptor precursor, calcitonin receptor, calcitonin isoform, parathyroid hormone, and calmodulin in the liver. This pattern was inverse in muscle, with the exception of calmodulin, which was significantly upregulated in smolts compared to parr. Additionally, plasma calcium was decreased in the smolt condition. This study is the first to characterize the expression pattern of calcium signaling-related genes in the liver and muscle of parr and smolt S. salar. However, further functional studies are required to obtain a wider understanding about the physiological changes that accompany the productive conditions during smoltification.


Subject(s)
Calcium Signaling/genetics , Gene Expression Regulation, Developmental , Salmo salar/growth & development , Salmo salar/genetics , Animals
5.
Article in English | MEDLINE | ID: mdl-30590175

ABSTRACT

Piscirickettsiosis caused by Piscirickettsia salmonis constitutes one of the main problems in farmed salmonid and marine fishes. The objective of this study was to evaluate the modulation of genes involved in the oxidative stress in the liver and muscle of Salmo salar challenge with low dosage of P. salmonis. The treatment (in duplicate) were as follows: Control injection (culture medium) and P. salmonis injection (1 × 102 PFU/mL) with sampling (liver and muscle) at several time-points during the 42-days experimental period (dpi). In liver, the gene expression of superoxide dismutase (SOD) and acetylcholinesterase (AChE) had differences with the control group only at 7 dpi, compared with glutathione-S-transferase (GST) and heat shock protein 70 (HSP70) that presented increases at 7 and 21 dpi. The glutathione peroxidase (GPx) and catalase (CAT) mRNAs were elevated at 13 and 21 dpi, respectively. While glutathione reductase (GR) and cytochrome P450 (P450) did not show variations in their expression during the experimental course. In muscle, the expression of CAT and AChE was higher than in the control condition at 2 and 42 dpi, respectively. While the number of transcripts SOD, GPx, GR, GST, P450 and HSP70 showed increases at 7- and 42-days post injection. The results suggest a transcriptional activation of genes involved in oxidative stress in both liver and muscle, with expression profiles that were tissue-specific and dependent on the time. This is the first study that reveals the transcriptional participation of all these genes associated with oxidative stress in response to the injection of P. salmonis.


Subject(s)
Fish Diseases/metabolism , Oxidative Stress , Piscirickettsia , Piscirickettsiaceae Infections/metabolism , Salmo salar/metabolism , Transcriptional Activation , Animals , Fish Diseases/microbiology , Piscirickettsiaceae Infections/veterinary , Salmo salar/microbiology
6.
Fish Shellfish Immunol ; 82: 492-503, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30165153

ABSTRACT

Eleginops maclovinus is a eurythermic fish that under natural conditions lives in environments with temperatures ranging from 4 to 18 °C and can be usually captured near salmon farming areas. The aim of this study was to evaluate the effect of temperature over the innate and adaptive immune response of E. maclovinus challenged with Piscirickettsia salmonis following different treatments: C (control injection with culture medium at 12 °C), C+ (bacterial injection at 12 °C), 18 °C c/A + B (injection with culture medium in acclimation at 18 °C), 18 °C c/A + B (bacterial injection in acclimation at 18 °C), 18 °C s/A + M (injection with culture medium without acclimation at 18 °C) and 18 °C s/A + B (bacterial injection without acclimation at 18 °C). Each injection had 100 µL of culture medium or with 100 µL at a concentration 1 × 108 of live bacteria, sampling six fish per group at 4, 8, 12, 16 and 20 days post-injection (dpi). Expression of the mRNA related with the innate immune response gene (TLR1, TLR5, TLR8, NLRC3, NLRC5, MyD88 and IL-1ß) as well as the adaptive immune response gene (MHCI, MHCII, IgMs and IgD) were measured in spleen and head kidney. Gene expression profiles were treatment-type and time dependent. Levels of Immunoglobulin M (IgM) increased in challenged groups with P. salmonis from day 8-20 post challenge, which suggest activation of B cells IgM + through P. salmonis epitope detection. Additionally, a rise in temperature from 12 °C (C+) to 18 °C (with/without acclimation) also resulted in antibody increment detected in serum with significant differences between "18 °C c/A + B" and "18 °C s/A + B" groups. This is the first study that evaluates the effect of temperature changes and mRNA expression related with immune system gene over time on E. maclovinus, a native wild life fish that cohabits in the salmon farming environment.


Subject(s)
Adaptive Immunity/genetics , Fish Diseases/immunology , Immunity, Innate/genetics , Perciformes/genetics , Perciformes/immunology , Piscirickettsiaceae Infections/veterinary , Transcriptome/immunology , Animals , Antarctic Regions , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Piscirickettsia/physiology , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/microbiology , Temperature
7.
Fish Shellfish Immunol ; 75: 139-148, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29421586

ABSTRACT

Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 µL of culture medium), wild type LF-89 strain (100 µL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 µL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1ß, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.


Subject(s)
Adaptive Immunity , Fish Diseases/immunology , Immunity, Innate , Perciformes/immunology , Piscirickettsia/physiology , Piscirickettsiaceae Infections/veterinary , Animals , Antarctic Regions , Chile , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Piscirickettsia/genetics , Piscirickettsiaceae Infections/immunology , Random Allocation , Spleen/immunology , Spleen/microbiology , Time Factors
8.
Dev Comp Immunol ; 73: 88-96, 2017 08.
Article in English | MEDLINE | ID: mdl-28336188

ABSTRACT

Ferritin is a major iron storage protein essential not only in the infectious process, but also in any circumstance generating oxidative stress. In this study, the cDNA coding sequence of ferritin-H was obtained from the sub-Antarctic Notothenioid fish Eleginops maclovinus through transcriptomic analysis of the head kidney. This sequence contained a 534 bp open reading frame that coded for a 177 amino acid protein with a molecular weight of 20,786.2 Da and a theoretical pI of 5.56. The protein displayed a region of iron putative response elements in the 5'UTR, two putative ferritin iron-binding region signatures, and seven characteristic amino acids with ferroxidase functions. Phylogenetic analysis related this sequence to ferritin-H sequences of other Antarctic Notothenioid fish, sharing 96.61% similarity. Constitutive gene expression analysis in different organs revealed increased ferritin-H gene expression in the gills, spleen, muscle, and liver. After infection with two bacterial strains of Piscirickettsia salmonis (LF-89 and Austral-005), ferritin-H was differentially expressed depending on bacterial strain and tissue. This study provides relevant information towards understanding the iron metabolism of a sub-Antarctic Notothenioid fish.


Subject(s)
Apoferritins/physiology , Fish Diseases/immunology , Fishes/physiology , Animals , Fish Diseases/metabolism , Iron/metabolism , Piscirickettsia , Piscirickettsiaceae Infections/veterinary , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...