Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biochem Parasitol ; 118(2): 201-10, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11738710

ABSTRACT

We have undertaken the first comparative pilot gene discovery analysis of approximately 25,000 random genomic and expressed sequence tags (ESTs) from three species of Plasmodium, the infectious agent that causes malaria. A total of 5482 genome survey sequences (GSSs) and 5582 ESTs were generated from mung bean nuclease (MBN) and cDNA libraries, respectively, of the ANKA line of the rodent malaria parasite Plasmodium berghei, and 10,874 GSSs generated from MBN libraries of the Salvador I and Belem lines of Plasmodium vivax, the most geographically wide-spread human malaria pathogen. These tags, together with 2438 Plasmodium falciparum sequences present in GenBank, were used to perform first-pass assembly and transcript reconstruction, and non-redundant consensus sequence datasets created. The datasets were compared against public protein databases and more than 1000 putative new Plasmodium proteins identified based on sequence similarity. Homologs of previously characterized Plasmodium genes were also identified, increasing the number of P. vivax and P. berghei sequences in public databases at least 10-fold. Comparative studies with other species of Apicomplexa identified interesting homologs of possible therapeutic or diagnostic value. A gene prediction program, Phat, was used to predict probable open reading frames for proteins in all three datasets. Predicted and non-redundant BLAST-matched proteins were submitted to InterPro, an integrated database of protein domains, signatures and families, for functional classification. Thus a partial predicted proteome was created for each species. This first comparative analysis of Plasmodium protein coding sequences represents a valuable resource for further studies on the biology of this important pathogen.


Subject(s)
Computational Biology/methods , Genome, Protozoan , Genomics , Malaria/parasitology , Plasmodium/genetics , Protozoan Proteins/genetics , Animals , Apicomplexa/classification , Apicomplexa/genetics , DNA, Complementary/genetics , Databases, Nucleic Acid , Humans , Molecular Sequence Data , Plasmodium/classification , Plasmodium berghei/genetics , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Proteome , Protozoan Proteins/metabolism , Sequence Analysis, DNA
2.
J Exp Med ; 194(11): 1571-81, 2001 Dec 03.
Article in English | MEDLINE | ID: mdl-11733572

ABSTRACT

Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoite protein erythrocyte binding antigen-175 (EBA-175). The involvement of several other parasite proteins during invasion have been proposed, but no direct evidence links them with a specific invasion pathway. Here we report the identification and characterization of P. falciparum normocyte binding protein 1 (PfNBP1), an ortholog of Plasmodium vivax reticulocyte binding protein-1. PfNBP1 binds to a sialic acid dependent trypsin-resistant receptor on the erythrocyte surface that appears to be distinct from known invasion receptors. Antibodies against PfNBP1 can inhibit invasion of trypsinized erythrocytes and two P. falciparum strains that express truncated PfNBP1 are unable to invade trypsinized erythrocytes. One of these strain, 7G8, also does not invade Glycophorin B-negative erythrocytes. PfNBP1 therefore defines a novel trypsin-resistant invasion pathway and adds a level of complexity to current models for P. falciparum erythrocyte invasion.


Subject(s)
Erythrocytes/metabolism , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Trypsin/metabolism , Animals , Antibodies, Protozoan/metabolism , Base Sequence , DNA, Complementary , Erythrocytes/parasitology , Humans , Membrane Proteins/genetics , Molecular Sequence Data , Mutagenesis , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...