Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24851-24862, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691767

ABSTRACT

Designing a high-performing triboelectric novel material with eco-friendly, rapid, and cost-effective synthesis is the future of material research in triboelectric nanogenerators (TENG). We report a mechanochemical ball mill synthesis of a zeolitic tetrazolate framework (ZTF-8) that is isostructural with the well-known zeolitic imidazolate framework ZIF-8. ZTF-8 is extremely stable in water, 0.1 M aqueous acid/base solutions for 75 days at 25 °C, and boiling water (100 °C) for 7 days. Kelvin probe force microscopy and molecular electrostatic surface potential computational analysis exhibited that ZTF-8 has a very high positive surface potential. Atomic force microscopy and three-dimensional digital microscopy studies reveal the high roughness profile in the ZTF-8 film. The unique structure, exceptional acid/base stability, good dielectric property, and high roughness profile combined with the extremely electropositive nature of ZTF-8 make it a suitable candidate as a polymer-free triboelectric positive material in TENG with outstanding performance (power density of 720 mW/m2). High triboelectric output was further validated using the COMSOL Multiphysics simulation tool. Simple mechanical hand tapping of the ZTF-based TENG (ZTF-TENG) device generates high electric output, which was practically used to power numerous low-powered devices like tally counter, clinical thermometer, and digital clock and also illuminates 125 light-emitting diodes. In addition, the efficiency of ZTF-TENG was utilized as a self-powered device for a selective dopamine (DA) sensor with good sensitivity (377.76 mV/µM/cm2), wide range linearity (5-120 µM), and excellent limit of detection (0.42 µM).

2.
Front Psychol ; 10: 2818, 2019.
Article in English | MEDLINE | ID: mdl-32010006

ABSTRACT

Dogs are one of the most common species to be found as pets and have been subjects of human curiosity, leading to extensive research on their socialization with humans. One of the dominant themes in dog cognition pertains to their capacity for understanding and responding to human referential gestures. The remarkable sociocognitive skills of pet dogs, while interacting with humans, is quite well established. However, studies regarding the free-ranging subpopulations are greatly lacking. The interactions of these dogs with humans are quite complex and multidimensional. For the first time, we tested 160 adult free-ranging dogs to understand their ability to follow relatively complex human referential gestures using dynamic and momentary distal pointing cues. We found that these dogs are capable of following distal pointing cues from humans to locate hidden food rewards. However, approximately half of the population tested showed a lack of tendency to participate even after successful familiarization with the experimental setup. A closer inspection revealed that anxious behavioral states of the individuals were responsible for such an outcome. Finally, we compared the results using data from an earlier study with dynamic proximal cues. We found that free-ranging dogs follow distal cues more accurately compared to proximal cue. We assume that life experiences with humans probably shape personalities of free-ranging dogs, which in turn influence their responsiveness to human communicative gestures.

SELECTION OF CITATIONS
SEARCH DETAIL
...