Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Neuroepidemiology ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295773

ABSTRACT

Native American individuals are more frequently affected by cerebrovascular diseases including stroke and vascular cognitive decline. The aim of this study is to determine stroke risk factors that are most prevalent in Wisconsin Native Americans and to examine how education at the community and individual level as well as intensive health wellness coaching may influence modification of stroke risk factors. Additionally, we will investigate the role novel stroke biomarkers may play in stroke risk in this population. This paper details the aims and methods employed in the "Stroke Prevention in the Wisconsin Native American Population" (clinicaltrials.gov identifier: NCT04382963) study including participant health assessments, clinical ultrasound exam of the carotid arteries, cognitive testing battery and structure and execution of the coaching program.

2.
Ultrasonics ; 137: 107193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37952384

ABSTRACT

In patients at high risk for ischemic stroke, clinical carotid ultrasound is often used to grade stenosis, determine plaque burden and assess stroke risk. Analysis currently requires a trained sonographer to manually identify vessel and plaque regions, which is time and labor intensive. We present a method for automatically determining bounding boxes and lumen segmentation using a Mask R-CNN network trained on sonographer assisted ground-truth carotid lumen segmentations. Automatic lumen segmentation also lays the groundwork for developing methods for accurate plaque segmentation, and wall thickness measurements in cases with no plaque. Different training schemes are used to identify the Mask R-CNN model with the highest accuracy. Utilizing a single-channel B-mode training input, our model produces a mean bounding box intersection over union (IoU) of 0.81 and a mean lumen segmentation IoU of 0.75. However, we encountered errors in prediction when the jugular vein is the most prominently visualized vessel in the B-mode image. This was due to the fact that our dataset has limited instances of B-mode images with both the jugular vein and carotid artery where the vein is dominantly visualized. Additional training datasets are anticipated to mitigate this issue.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Constriction, Pathologic , Carotid Arteries/diagnostic imaging , Ultrasonography, Carotid Arteries , Image Processing, Computer-Assisted/methods
3.
Front Cardiovasc Med ; 10: 1215449, 2023.
Article in English | MEDLINE | ID: mdl-37560112

ABSTRACT

Objective: In humans, arterial grayscale ultrasound texture features independently predict adverse cardiovascular disease (CVD) events and change with medical interventions. We performed this study to examine how grayscale ultrasound texture features and elastin fibers change in plaque-free segments of the arterial wall in a murine model prone to atherosclerosis. Methods: A total of 10 Apoetm1Unc/J mice (n = 5 male, n = 5 female) were imaged at 6, 16, and 24 weeks of age. Two mice were euthanized at 6 and 16 weeks and the remaining mice at 24 weeks. Texture features were extracted from the ultrasound images of the distal 1.0 mm of the common carotid artery wall, and elastin measures were extracted from histology images. Two-way analysis of variance was used to evaluate associations between week, sex, and grayscale texture features. Texture feature and elastin number comparisons between weeks were conducted using the sex-by-week two-way interaction contrasts. Sex-specific correlations between the number of elastin fibers and grayscale texture features were analyzed by conducting non-parametric Spearman's rank correlation analyses. Results: Arterial wall homogeneity changed significantly in male mice from 6 to 24 weeks, with a mean (SD) of 0.14 (0.03) units at 6 weeks and 0.18 (0.03) units at 24 weeks (p = 0.026). Spatial gray level dependence matrices-homogeneity (SGLD-HOM) also correlated with carotid artery plaque score (rs = 0.707, p = 0.033). Elastin fibers in the region of interest decreased from 6 to 24 weeks for both male and female mice, although only significantly in male mice. The mean (SD) number of elastin fibers for male mice was 5.32 (1.50) at 6 weeks and 3.59 (0.38) at 24 weeks (p = 0.023). For female mice, the mean (SD) number of elastin fibers was 3.98 (0.38) at 6 weeks and 3.46 (0.19) at 24 weeks (p = 0.051). Conclusion: Grayscale ultrasound texture features that are associated with increased risk for CVD events in humans were used in a murine model, and the grayscale texture feature SGLD-HOM was shown to change in male mice from 6 weeks to 24 weeks. Structural alterations of the arterial wall (change in elastin fiber number) were observed during this time and may differ by sex.

4.
Ultrasound Med Biol ; 49(9): 2103-2112, 2023 09.
Article in English | MEDLINE | ID: mdl-37400303

ABSTRACT

OBJECTIVES: Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS: Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS: Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION: The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.


Subject(s)
Carotid Stenosis , Elasticity Imaging Techniques , Male , Female , Animals , Mice , Bayes Theorem , Disease Models, Animal , Elasticity Imaging Techniques/methods , Carotid Arteries/diagnostic imaging , Ultrasonography , Carotid Stenosis/complications
5.
Ultrasound Med Biol ; 49(1): 45-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36184393

ABSTRACT

Adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) uses raw radiofrequency signals to estimate myocardial wall contractility as a surrogate measure of relative tissue elasticity incorporating regularization in the Bayesian sense. We determined the feasibility of using ABR-CSI -derived strain for in vivo longitudinal monitoring of cardiac remodeling in a murine ischemic injury model (myocardial infarction [MI] and ischemia-reperfusion [IR]) and validated the findings against ground truth histology. We randomly stratified 30 BALB/CJ mice (17 females, 13 males, median age = 10 wk) into three surgical groups (MI = 10, IR = 12, sham = 8) and imaged pre-surgery (baseline) and 1, 2, 7 and 14 d post-surgery using a pre-clinical high-frequency ultrasound system (VisualSonics Vevo 2100). We then used ABR-CSI to estimate end-systolic and peak radial (er) and longitudinal (el) strain estimates. ABR-CSI was found to have the ability to serially monitor non-uniform cardiac remodeling associated with murine MI and IR non-invasively through temporal variation of strain estimates post-surgery. Furthermore, radial end-systole (ES) strain images and segmental strain curves exhibited improved discrimination among infarct, border and remote regions around the myocardium compared with longitudinal strain results. For example, the MI group had significantly lower (Friedman's with Bonferroni-Dunn test, p = 0.002) ES er values in the anterior middle (infarcted) region at day 14 (n = 9, 9.23 ± 7.39%) compared with the BL group (n = 9, 44.32 ± 5.49). In contrast, anterior basal (remote region) mean ES er values did not differ significantly (non-significant Friedman's test, χ2 = 8.93, p = 0.06) at day 14 (n = 6, 33.05 ± 6.99%) compared with baseline (n = 6, 34.02 ± 6.75%). Histology slides stained with Masson's trichrome (MT) together with a machine learning model (random forest classifier) were used to derive the ground truth cardiac fibrosis parameter termed histology percentage of myocardial fibrosis (PMF). Both radial and longitudinal strain were found to have strong statistically significant correlations with the PMF parameter. However, radial strain had a higher Spearman's correlation value (εresρ = -0.67, n = 172, p < 0.001) compared with longitudinal strain (εlesρ = -0.60, n = 172, p < 0.001). Overall, the results of this study indicate that ABR-CSI can reliably perform non-invasive detection of infarcted and remote myocardium in small animal studies.


Subject(s)
Cardiomyopathies , Myocardial Infarction , Male , Female , Mice , Animals , Ventricular Remodeling , Bayes Theorem , Heart , Myocardial Infarction/diagnostic imaging , Myocardium
6.
Sci Rep ; 12(1): 8522, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595876

ABSTRACT

An adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) algorithm for in vivo murine myocardial function assessment is presented. We report on 31 BALB/CJ mice (n = 17 females, n = 14 males), randomly stratified into three surgical groups: myocardial infarction (MI, n = 10), ischemia-reperfusion (IR, n = 13) and control (sham, n = 8) imaged pre-surgery (baseline- BL), and 1, 2, 7 and 14 days post-surgery using a high frequency ultrasound imaging system (Vevo 2100). End-systole (ES) radial and longitudinal strain images were used to generate cardiac fibrosis maps using binary thresholding. Percentage fibrotic myocardium (PFM) computed from regional fibrosis maps demonstrated statistically significant differences post-surgery in scar regions. For example, the MI group had significantly higher PFMRadial (%) values in the anterior mid region (p = 0.006) at Day 14 (n = 8, 42.30 ± 14.57) compared to BL (n = 12, 1.32 ± 0.85). A random forest classifier automatically detected fibrotic regions from ground truth Masson's trichrome stained histopathology whole slide images. Both PFMRadial (r = 0.70) and PFMLongitudinal (r = 0.60) results demonstrated strong, positive correlation with PFMHistopathology (p < 0.001).


Subject(s)
Heart , Myocardial Infarction , Animals , Bayes Theorem , Disease Models, Animal , Female , Fibrosis , Male , Mice , Myocardial Infarction/pathology , Myocardium/pathology
7.
Cytotherapy ; 24(5): 534-543, 2022 05.
Article in English | MEDLINE | ID: mdl-35183442

ABSTRACT

BACKGROUND: Xerostomia, or dry mouth, is a common side effect of head and neck radiation. Current treatment options for radiation-induced xerostomia are generally supportive in nature. Adult stem cells are the ultimate source for replenishment of salivary gland tissue. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a viable cell-based therapy for xerostomia. We have undertaken studies enabling U.S. Food and Drug Administration Investigational New Drug status, demonstrating the normal phenotype, intact functionality, and pro-growth secretome of interferon-γ (IFNγ)-stimulated BM-MSCs taken from patients with head and neck cancer who have undergone radiation ± chemotherapy. Here we present the protocol of MARSH, a first-in-human clinical trial of bone marrow-derived, IFNγ-activated BM-MSCs for the treatment of radiation-induced xerostomia. METHODS: This single-center phase 1 dose-escalation with expansion cohort, non-placebo-controlled study will assess the safety and tolerability of BM-MSCs for the treatment of radiation-induced xerostomia in patients who had head and neck cancer. The phase 1 dose-escalation study will be a 3 + 3 design with staggered enrollment. A total of 21 to 30 subjects (9 to 18 in phase 1 study, 12 in expansion cohort) will be enrolled. The primary endpoint is determining the recommended phase 2 dose (RP2D) of IFNγ-stimulated BM-MSCs to enable further studies on the efficacy of BM-MSCs. Patients' bone marrow will be aspirated, and BM-MSCs will be expanded, stimulated with IFNγ, and injected into the submandibular gland. The RP2D will be determined by dose-limiting toxicities occurring within 1 month of BM-MSC injection. Secondary outcomes of saliva amounts and composition, ultrasound of salivary glands, and quality of life surveys will be taken at 3-, 6-, 12-, and 24-month visits. DISCUSSION: Autotransplantation of IFNγ-stimulated BM-MSCs in salivary glands after radiation therapy or chemoradiation therapy may provide an innovative remedy to treat xerostomia and restore quality of life. This is the first therapy for radiation-induced xerostomia that may be curative. TRIAL REGISTRATION: World Health Organization International Clinical Trials Registry Platform: NCT04489732.


Subject(s)
Head and Neck Neoplasms , Mesenchymal Stem Cells , Radiation Injuries , Xerostomia , Bone Marrow , Clinical Trials, Phase I as Topic , Head and Neck Neoplasms/radiotherapy , Humans , Quality of Life , Radiation Injuries/therapy , Transplantation, Autologous , Wetlands , Xerostomia/etiology , Xerostomia/therapy
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2879-2882, 2021 11.
Article in English | MEDLINE | ID: mdl-34891848

ABSTRACT

Minimum variance (MV) beamforming improves resolution and reduces sidelobes when compared to delay-and-sum (DAS) beamforming for photoacoustic imaging (PAI). However, some level of sidelobe signal and incoherent clutter persist degrading MV PAI quality. Here, an adaptive beamforming algorithm (PSAPMV) combining MV formulation and sub-aperture processing is proposed. In PSAPMV, the received channel data are split into two complementary nonoverlapping sub-apertures and beamformed using MV. A weighting matrix based on similarity between sub-aperture beamformed images was derived and multiplied with the full aperture MV image resulting in suppression of sidelobe and incoherent clutter in the PA image. Numerical simulation experiments with point targets, diffuse inclusions and microvasculature networks are used to validate PSAPMV. Quantitative evaluation was done in terms of main-lobe-to-side-lobe ratio, full width at half maximum (FWHM), contrast ratio (CR) and generalized contrast-to-noise ratio (gCNR). PSAPMV demonstrated improved beamforming performance both qualitatively and quantitatively. PSAPMV had higher resolution (FWHM =0.19 mm) than MV (0.21 mm) and DAS (0.22mm) in point target simulations, better target detectability (gCNR =0.99) than MV (0.89) and DAS (0.84) for diffuse inclusions and improved contrast (CR in microvasculature simulation, DAS = 15.38, MV = 22.42, PSAPMV = 51.74 dB).


Subject(s)
Image Processing, Computer-Assisted , Photoacoustic Techniques , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2883-2886, 2021 11.
Article in English | MEDLINE | ID: mdl-34891849

ABSTRACT

A cardiac strain imaging framework with adaptive Bayesian regularization (ABR) is proposed for in vivo assessment of murine cardiac function. The framework uses ultrasound (US) radio-frequency data collected with a high frequency (fc = 30MHz) imaging system and a multi-level block matching algorithm with ABR to derive inter-frame cardiac displacements. Lagrangian cardiac strain (radial, er and longitudinal, el) tensors were derived by segmenting the myocardial wall starting at the ECG R-wave and accumulating interframe deformations over a cardiac cycle. In vivo feasibility was investigated through a longitudinal study with two mice (one ischemia-perfusion (IR) injury and one sham) imaged at five sessions (pre-surgery (BL) and 1,2,7 and 14 days post-surgery). End-systole (ES) strain images and segmental strain curves were derived for quantitative evaluation. Both mice showed periodic variation of er and el strain at BL with segmental synchroneity. Infarcted regions of IR mouse at Day 14 were associated with reduced or sign reversed ES er and el values while the sham mouse had similar or higher strain than at BL. Infarcted regions identified in vivo were associated with increased collagen content confirmed with Masson's Trichrome stained ex vivo heart sections.Clinical Relevance-Higher quality cardiac strain images derived with RF data and Bayesian regularization can potentially improve the sensitivity and accuracy of non-invasive assessment of cardiovascular disease models.


Subject(s)
Algorithms , Heart , Animals , Bayes Theorem , Heart/diagnostic imaging , Longitudinal Studies , Mice , Ultrasonography
10.
Ultrasound Med Biol ; 47(8): 2138-2156, 2021 08.
Article in English | MEDLINE | ID: mdl-34011451

ABSTRACT

Liver cancer is a leading cause of cancer-related deaths; however, primary treatment options such as surgical resection and liver transplant may not be viable for many patients. Minimally invasive image-guided microwave ablation (MWA) provides a locally effective treatment option for these patients with an impact comparable to that of surgery for both cancer-specific and overall survival. MWA efficacy is correlated with accurate image guidance; however, conventional modalities such as B-mode ultrasound and computed tomography have limitations. Alternatively, ultrasound elastography has been used to demarcate post-ablation zones, yet has limitations for pre-ablation visualization because of variability in strain contrast between cancer types. This study attempted to characterize both pre-ablation tumors and post-ablation zones using electrode displacement elastography (EDE) for 13 patients with hepatocellular carcinoma or liver metastasis. Typically, MWA ablation margins of 0.5-1.0 cm are desired, which are strongly correlated with treatment efficacy. Our results revealed an average estimated ablation margin inner quartile range of 0.54-1.21 cm with a median value of 0.84 cm. These treatment margins lie within or above the targeted ablative margin, indicating the potential to use EDE for differentiating index tumors and ablated zones during clinical ablations. We also obtained a high correlation between corresponding segmented cross-sectional areas from contrast-enhanced computed tomography, the current clinical gold standard, when compared with EDE strain images, with r2 values of 0.97 and 0.98 for pre- and post-ablation regions.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Elasticity Imaging Techniques/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Radiofrequency Ablation , Adult , Aged , Aged, 80 and over , Correlation of Data , Elasticity Imaging Techniques/instrumentation , Electrodes , Female , Humans , Liver Neoplasms/secondary , Male , Middle Aged , Preoperative Period
11.
J Biomed Opt ; 26(4)2021 04.
Article in English | MEDLINE | ID: mdl-33876591

ABSTRACT

SIGNIFICANCE: Photoacoustic imaging (PAI) can be used to infer molecular information about myocardial health non-invasively in vivo using optical excitation at ultrasonic spatial resolution. For clinical and preclinical linear array imaging systems, conventional delay-and-sum (DAS) beamforming is typically used. However, DAS cardiac PA images are prone to artifacts such as diffuse quasi-static clutter with temporally varying noise-reducing myocardial signal specificity. Typically, multiple frame averaging schemes are utilized to improve the quality of cardiac PAI, which affects the spatial and temporal resolution and reduces sensitivity to subtle PA signal variation. Furthermore, frame averaging might corrupt myocardial oxygen saturation quantification due to the presence of natural cardiac wall motion. In this paper, a spatiotemporal singular value decomposition (SVD) processing algorithm is proposed to reduce DAS PAI artifacts and subsequent enhancement of myocardial signal specificity. AIM: Demonstrate enhancement of PA signals from myocardial tissue compared to surrounding tissues and blood inside the left-ventricular (LV) chamber using spatiotemporal SVD processing with electrocardiogram (ECG) and respiratory signal (ECG-R) gated in vivo murine cardiac PAI. APPROACH: In vivo murine cardiac PAI was performed by collecting single wavelength (850 nm) photoacoustic channel data on eight healthy mice. A three-dimensional (3D) volume of complex PAI data over a cardiac cycle was reconstructed using a custom ECG-R gating algorithm and DAS beamforming. Spatiotemporal SVD was applied on a two-dimensional Casorati matrix generated using the 3D volume of PAI data. The singular value spectrum (SVS) was then filtered to remove contributions from diffuse quasi-static clutter and random noise. Finally, SVD processed beamformed images were derived using filtered SVS and inverse SVD computations. RESULTS: Qualitative comparison with DAS and minimum variance (MV) beamforming shows that SVD processed images had better myocardial signal specificity, contrast, and target detectability. DAS, MV, and SVD images were quantitatively evaluated by calculating contrast ratio (CR), generalized contrast-to-noise ratio (gCNR), and signal-to-noise ratio (SNR). Quantitative evaluations were done at three cardiac time points (during systole, at end-systole (ES), and during diastole) identified from co-registered ultrasound M-Mode image. Mean CR, gCNR, and SNR values of SVD images at ES were 245, 115.15, and 258.17 times higher than DAS images with statistical significance evaluated with one-way analysis of variance. CONCLUSIONS: Our results suggest that significantly better-quality images can be realized using spatiotemporal SVD processing for in vivo murine cardiac PAI.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Animals , Mice , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography
12.
Article in English | MEDLINE | ID: mdl-33606629

ABSTRACT

Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS CF ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS CF , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS CF in vasculature simulations) and improved clutter suppression.


Subject(s)
Photoacoustic Techniques , Algorithms , Animals , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography
13.
Article in English | MEDLINE | ID: mdl-35174360

ABSTRACT

Cardiac strain imaging (CSI) plays a critical role in the detection of myocardial motion abnormalities. Displacement estimation is an important processing step to ensure the accuracy and precision of derived strain tensors. In this paper, we propose and implement Spatiotemporal Bayesian regularization (STBR) algorithms for two-dimensional (2-D) normalized cross-correlation (NCC) based multi-level block matching along with incorporation into a Lagrangian cardiac strain estimation framework. Assuming smooth temporal variation over a short span of time, the proposed STBR algorithm performs displacement estimation using at least four consecutive ultrasound radio-frequency (RF) frames by iteratively regularizing 2-D NCC matrices using information from a local spatiotemporal neighborhood in a Bayesian sense. Two STBR schemes are proposed to construct Bayesian likelihood functions termed as Spatial then Temporal Bayesian (STBR-1) and simultaneous Spatiotemporal Bayesian (STBR-2). Radial and longitudinal strain estimated from a finite-element-analysis (FEA) model of realistic canine myocardial deformation were utilized to quantify strain bias, normalized strain error and total temporal relative error (TTR). Statistical analysis with one-way analysis of variance (ANOVA) showed that all Bayesian regularization methods significantly outperform NCC with lower bias and errors (p < 0.001). However, there was no significant difference among Bayesian methods. For example, mean longitudinal TTR for NCC, SBR, STBR-1 and STBR-2 were 25.41%, 9.27%, 10.38% and 10.13% respectively An in vivo feasibility study using RF data from ten healthy mice hearts were used to compare the elastographic signal-to-noise ratio (SNR e ) calculated using stochastic analysis. STBR-2 had the highest expected SNR e both for radial and longitudinal strain. The mean expected SNR e values for accumulated radial strain for NCC, SBR, STBR-1 and STBR-2 were 5.03, 9.43, 9.42 and 10.58, respectively. Overall results suggest that STBR improves CSI in vivo.

14.
Article in English | MEDLINE | ID: mdl-32795968

ABSTRACT

Photoacoustic (PA) image reconstruction generally utilizes delay-and-sum (DAS) beamforming of received acoustic waves from tissue irradiated with optical illumination. However, nonadaptive DAS reconstructed cardiac PA images exhibit temporally varying noise which causes reduced myocardial PA signal specificity, making image interpretation difficult. Adaptive beamforming algorithms such as minimum variance (MV) with coherence factor (CF) weighting have been previously reported to improve the DAS image quality. In this article, we report on an adaptive beamforming algorithm by extending CF weighting to the temporal domain for preclinical cardiac PA imaging (PAI). The proposed spatiotemporal coherence factor (STCF) considers multiple temporally adjacent image acquisition events during beamforming and cancels out signals with low spatial coherence and temporal coherence, resulting in higher background noise cancellation while preserving the main features of interest (myocardial wall) in the resultant PA images. STCF has been validated using the numerical simulations and in vivo ECG and respiratory-signal-gated cardiac PAI in healthy murine hearts. The numerical simulation results demonstrate that STCF weighting outperforms DAS and MV beamforming with and without CF weighting under different levels of inherent contrast, acoustic attenuation, optical scattering, and signal-to-noise (SNR) of channel data. Performance improvement is attributed to higher sidelobe reduction (at least 5 dB) and SNR improvement (at least 10 dB). Improved myocardial signal specificity and higher signal rejection in the left ventricular chamber and acoustic gel region are observed with STCF in cardiac PAI.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Animals , Computer Simulation , Mice , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2023-2026, 2020 07.
Article in English | MEDLINE | ID: mdl-33018401

ABSTRACT

Microwave ablation has become a common treatment method for liver cancers. Unfortunately, microwave ablation success is correlated with clinician's ability for proper electrode placement and assess ablative margins, requiring accurate imaging of liver tumors and ablated zones. Conventionally, ultrasound and computed tomography are utilized for this purpose, yet both have their respective drawbacks. As an alternate approach, electrode displacement elastography offers promise but is still plagued by decorrelation artifacts reducing lesion depiction and visualization. A recent filtering method, namely dictionary representation, has improved contrast-to-noise ratios without reducing delineation contrast. As a supplement to this recent work, this paper evaluates adaptations on this initial dictionary-learning algorithm and applies them to an EDE phantom and 15 in-vivo patient datasets. Two new adaptations of dictionary representations were evaluated, namely a combined dictionary and magnitude-based dictionary representation. When comparing numerical results, the combined dictionary representation algorithm outperforms the previous developed dictionary representation in signal-to-noise (1.54 dB) and contrast-to-noise (0.67 dB) ratios, while a magnitude dictionary representation produces higher noise levels, but improves visualized strain tensor resolution.


Subject(s)
Elasticity Imaging Techniques , Liver Neoplasms , Electrodes , Humans , Liver Neoplasms/diagnostic imaging , Phantoms, Imaging
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2031-2034, 2020 07.
Article in English | MEDLINE | ID: mdl-33018403

ABSTRACT

Normalized cross-correlation (NCC) function used in ultrasound strain imaging can get corrupted due to signal decorrelation inducing large displacement errors. Bayesian regularization has been applied in an iterative manner to regularize the NCC function and to reduce estimation variance and peak-hopping errors. However, incorrect choice of the number of iterations can lead to over-regularization errors. In this paper, we propose the use of log compression of regularized NCC function to improve subsample estimation. Performance of parabolic interpolation before and after log compression of the regularized NCC function were compared in numerical simulations of uniform and inclusion phantoms. Significant improvement was achieved with the proposed scheme for lateral estimation results. For example, lateral signal-to-noise ratio (SNR) was 10 dB higher after log compression at 3% strain in a uniform phantom. Lateral contrast-to-noise ratio (CNR) was 1.81 dB higher with proposed method at 3% strain in inclusion phantom. No significant difference was observed in axial estimation due to presence of phase information and high sampling frequency. Our results suggest that this simple approach makes Bayesian regularization robust to over-regularization artifacts.


Subject(s)
Data Compression , Elasticity Imaging Techniques , Algorithms , Bayes Theorem , Ultrasonography
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2088-2091, 2020 07.
Article in English | MEDLINE | ID: mdl-33018417

ABSTRACT

A relationship between ultrasound strain indices in carotid plaque to cognitive domains of executive and language function are studied in 42 symptomatic and 34 asymptomatic patients. The mean and standard deviation of the percentage stenosis were 72.10 ± 15.19 and 77.41 ± 11.20 for symptomatic and asymptomatic patients respectively. Pearson's correlation between axial, lateral and shear strain indices versus executive and language composite scores was performed.. A significant inverse correlation for both executive and language function for symptomatic patients to strain indices was found. On the other hand, for asymptomatic patients only executive function was inversely correlated with the corresponding strain indices. Our hypothesis that microemboli from vulnerable plaque and possible 'silent strokes' may be responsible for decline in executive function for both symptomatic and asymptomatic patients'. Strokes and transient ischemic attacks may be responsible for further cognitive decline in language function for symptomatic patients.


Subject(s)
Carotid Stenosis , Cognitive Dysfunction , Plaque, Atherosclerotic , Carotid Stenosis/diagnostic imaging , Humans , Plaque, Amyloid , Plaque, Atherosclerotic/diagnostic imaging , Ultrasonography
18.
Ultrason Imaging ; 42(4-5): 221-230, 2020.
Article in English | MEDLINE | ID: mdl-32885739

ABSTRACT

Carotid plaque segmentation in ultrasound longitudinal B-mode images using deep learning is presented in this work. We report on 101 severely stenotic carotid plaque patients. A standard U-Net is compared with a dilated U-Net architecture in which the dilated convolution layers were used in the bottleneck. Both a fully automatic and a semi-automatic approach with a bounding box was implemented. The performance degradation in plaque segmentation due to errors in the bounding box is quantified. We found that the bounding box significantly improved the performance of the networks with U-Net Dice coefficients of 0.48 for automatic and 0.83 for semi-automatic segmentation of plaque. Similar results were also obtained for the dilated U-Net with Dice coefficients of 0.55 for automatic and 0.84 for semi-automatic when compared to manual segmentations of the same plaque by an experienced sonographer. A 5% error in the bounding box in both dimensions reduced the Dice coefficient to 0.79 and 0.80 for U-Net and dilated U-Net respectively.


Subject(s)
Carotid Stenosis/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Plaque, Atherosclerotic/diagnostic imaging , Ultrasonography/methods , Carotid Arteries/diagnostic imaging , Humans
19.
J Ultrasound Med ; 39(10): 2033-2042, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32395885

ABSTRACT

OBJECTIVES: Traditional Doppler measures have been used to predict cognitive performance in patients with carotid atherosclerosis. Novel measures, such as carotid plaque strain indices (CPSIs), have shown associations with cognitive performance. We hypothesized that lower mean middle cerebral artery (MCA) velocities, higher bulb-internal carotid artery (ICA) velocities, the MCA pulsatility index (PI), and CPSIs would be associated with poorer cognitive performance in individuals with advanced atherosclerosis. METHODS: Neurocognitive testing, carotid ultrasound imaging, transcranial Doppler imaging, and carotid strain imaging were performed on 40 patients scheduled for carotid endarterectomy. Kendall tau correlations were used to examine relationships between cognitive tests and the surgical-side maximum peak systolic velocity (PSV; from the bulb, proximal, mid, or distal ICA), mean MCA velocity and PI, and maximum CPSIs (axial, lateral, and shear strain indices used to characterize plaque deformations with arterial pulsation). Cognitive measures included age-adjusted indices of verbal fluency, verbal and visual learning/memory, psychomotor speed, auditory attention/working memory, visuospatial construction, and mental flexibility. RESULTS: Participants had a median age of 71.0 (interquartile range, 9.75) years; 26 were male (65%), and 14 were female (35%). Traditional Doppler parameters, PSV, mean MCA velocity, and MCA PI did not predict cognitive performance (all P > .05). Maximum CPSIs were significantly associated with cognitive performance (P < .05). CONCLUSIONS: Traditional velocity measurements of the maximum bulb-ICA PSV, mean MCA velocity, and PI were not associated with cognitive performance in patients with advanced atherosclerotic disease; however, maximum CPSIs were associated with cognitive performance. These findings suggest that cognition may be associated with unstable plaque rather than blood flow.


Subject(s)
Atherosclerosis , Carotid Stenosis , Blood Flow Velocity , Carotid Arteries/diagnostic imaging , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Child , Cognition , Female , Humans , Male , Middle Cerebral Artery/diagnostic imaging , Ultrasonography, Doppler, Transcranial
20.
Ultrasound Med Biol ; 46(6): 1513-1532, 2020 06.
Article in English | MEDLINE | ID: mdl-32291105

ABSTRACT

Quantitative ultrasound has been used to assess carotid plaque tissue composition. Here, we compute the attenuation coefficient (AC) in vivo with the optimum power spectral shift estimator (OPSSE) and reference phantom method (RPM), extract AC parameters and form parametric maps. Differences between OPSSE and RPM AC parameters are computed. Relationships between AC parameters, surgical scores and histopathology assessments are examined. Kendall's τ correlations between OPSSE AC and surgical scores are significant, including those between cholesterol and Standard Deviation (adjusted p = 0.038); thrombus and Minimum (adjusted p = 0.002), Maximum (adjusted p = 0.021) and Standard Deviation (adjusted p = 0.001); ulceration and Average (adjusted p = 0.033), Median (unadjusted p = 0.013), Maximum (unadjusted p = 0.039) and Mode (adjusted p = 0.009). The strongest correlations with histopathology are percentage cholesterol and Median OPSSE (unadjusted p = 0.007); percentage hemorrhage and Minimum OPSSE (adjusted p < 0.001); hemosiderin score and Median OPSSE (adjusted p = 0.010); and percentage calcium and Percentage Non-physical RPM Pixels (unadjusted p = 0.014). Kruskal-Wallis H and Dunn's post hoc tests have the ability to distinguish between groups (p < 0.05). Results suggest AC parameters may assist in vivo evaluation of carotid plaque vulnerability.


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Ultrasonography , Aged , Calcium/analysis , Carotid Artery Diseases/pathology , Cholesterol/analysis , Female , Hemorrhage/pathology , Hemosiderin/analysis , Humans , Image Interpretation, Computer-Assisted , Male , Plaque, Atherosclerotic/chemistry , Plaque, Atherosclerotic/pathology , Thrombosis/pathology , Ulcer/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...