Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Thermophys ; 42(12): 163, 2021.
Article in English | MEDLINE | ID: mdl-34744236

ABSTRACT

A future multi-TeV muon collider requires new ideas to tackle the problems of muon production, accumulation and acceleration. In the Low EMittance Muon Accelerator concept a 45 GeV positron beam, stored in an accumulation ring with high energy acceptance and low angular divergence, is extracted and driven to a target system in order to produce muon pairs near the kinematic threshold. However, this scheme requires an intensity of the impinging positron beam so high that the energy dissipation and the target maintenance are crucial aspects to be investigated. Both peak temperature rises and thermomechanical shocks are related to the beam spot size at the target for a given material: these aspects are setting a lower bound on the beam spot size itself. The purpose of this paper is to provide a fully theoretical approach to predict the temperature increase, the thermal gradients, and the induced thermomechanical stress on targets, generated by a sequence of 45 GeV positron bunches. A case study is here presented for Beryllium and Graphite targets. We first discuss the Monte Carlo simulations to evaluate the heat deposited on the targets after a single bunch of 3 × 1011 positrons for different beam sizes. Then a theoretical model is developed to simulate the temperature increase of the targets subjected to very fast sequences of positron pulses, over different timescales, from ps regime to hundreds of seconds. Finally a simple approach is provided to estimate the induced thermomechanical stresses in the target, together with simple criteria to be fulfilled (i.e., Christensen safety factor) to prevent the crack formation mechanism.

2.
Opt Lett ; 39(4): 981-4, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562257

ABSTRACT

Non-paraxial corrections for a scalar optical field that follows the Helmotz equation are extracted for the first time, to the best of our knowledge, in the angular spectrum representation by taking into account generic boundary conditions. Those integration constants are compared with closed-form solutions and approximate series expansions usually obtained by other authors. This method is particularized to the direct electron acceleration with a tightly focused TM(0,1) laser beam to demonstrate that these constants have a strong effect on the final average energy and quality of the electron beam.

3.
Appl Opt ; 48(35): 6651-61, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-20011005

ABSTRACT

Various four-mirror optical resonators are studied from the perspective of realizing passive stacking cavities. A comparative study of the mechanical stability is provided. The polarization properties of the cavity eigenmodes are described, and it is shown that the effect of mirror misalignments (or motions) induces polarization and stacking power instabilities. These instabilities increase with the finesse of the Fabry-Perot cavity. A tetrahedral configuration of the four mirrors is found to minimize the consequences of the mirrors' motion and misalignment by reducing the instability parameter by at least 2 orders of magnitude.

4.
Appl Opt ; 46(28): 6859-66, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17906711

ABSTRACT

A nonparaxial scalar diffraction integral is used to determine numerically the resonance modes of a two-dimensional nearly concentric Fabry-Perot resonator. Numerical examples are provided, and results are compared to those published by Laabs and Friberg [IEEE J. Quantum Electron. 35, 198 (1999)]. Discrepancies are reported and further discussed on the basis of the difference between the solution space supported by the numerical method used here and the one used by Laabs and Friberg.

SELECTION OF CITATIONS
SEARCH DETAIL
...