Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Mater Today Bio ; 25: 100992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38371467

ABSTRACT

Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.

2.
Adv Healthc Mater ; 13(3): e2301894, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922888

ABSTRACT

Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.


Subject(s)
Nanocomposites , Quality of Life , Animals , Mice , Biocompatible Materials , Cell Differentiation , Collagen , Neuronal Outgrowth
3.
Front Bioeng Biotechnol ; 11: 1253602, 2023.
Article in English | MEDLINE | ID: mdl-37781536

ABSTRACT

Heart disease remains the leading cause of worldwide mortality. Although the last decades have broadened our understanding of the biology behind the pathologies of heart disease, ex vivo systems capable of mimicking disease progression and abnormal heart function using human cells remain elusive. In this contribution, an open-access electromechanical system (BEaTS-ß) capable of mimicking the environment of cardiac disease is reported. BEaTS-ß was designed using computer-aided modeling to combine tunable electrical stimulation and mechanical deformation of cells cultured on a flexible elastomer. To recapitulate the clinical scenario of a heart attack more closely, in designing BEaTS-ß we considered a device capable to operate under hypoxic conditions. We tested human induced pluripotent stem cell-derived cardiomyocytes, fibroblasts, and coronary artery endothelial cells in our simulated myocardial infarction environment. Our results indicate that, under simulated myocardium infarction, there was a decrease in maturation of cardiomyocytes, and reduced survival of fibroblasts and coronary artery endothelial cells. The open access nature of BEaTS-ß will allow for other investigators to use this platform to investigate cardiac cell biology or drug therapeutic efficacy in vitro under conditions that simulate arrhythmia and/or myocardial infarction.

4.
Biomater Sci ; 11(19): 6635-6649, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37609774

ABSTRACT

Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.


Subject(s)
CD47 Antigen , Lung Neoplasms , Humans , RNA, Small Interfering , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Polyethylene Glycols
5.
Opt Express ; 31(2): 2072-2087, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785229

ABSTRACT

Physical unclonable functions (PUFs) are receiving significant attention with the rise of cryptography and the drive towards creating unique structures for security applications and anti-counterfeiting. Specifically, nanoparticle based PUFs can produce a high degree of randomness through their size, shape, spatial distribution, chemistry, and optical properties, rendering them very difficult to replicate. However, nanoparticle PUFs typically rely on complex preparation procedures involving chemical synthesis in solution, therefore requiring dispersion, and embedding within a host medium for application. We propose laser machining of surfaces as a one-step process for the creation of complex nanoparticle based PUFs by machining 600 nm thick copper films on a silicon substrate to yield a complex spatial and chemical distribution of redeposited copper, silicon, and oxide species. The approaches and material system investigated have potential applications in silicon chip authentication.

6.
Biomater Sci ; 10(5): 1134-1165, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35023513

ABSTRACT

In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.


Subject(s)
Biocompatible Materials , Tissue Engineering , Animals , Biocompatible Materials/pharmacology , Biomimetics , Biophysics , Humans , Nervous System , Tissue Engineering/methods
7.
Soft Matter ; 17(21): 5284-5302, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34075927

ABSTRACT

Given the intertwined physicochemical effects exerted in vivo by both natural and synthetic (e.g., biomaterial) interfaces on adhering cells, the evaluation of structure-function relationships governing cellular response to micro-engineered surfaces for applications in neuronal tissue engineering requires the use of in vitro testing platforms which consist of a clinically translatable material with tunable physiochemical properties. In this work, we micro-engineered chitosan substrates with arrays of parallel channels with variable width (20 and 60 µm). A citric acid (CA)-based crosslinking approach was used to provide an additional level of synergistic cueing on adhering cells by regulating the chitosan substrate's stiffness. Morphological and physicochemical characterization was conducted to unveil the structure-function relationships which govern the activity of rat dorsal root ganglion neurons (DRGs) and human mesenchymal stem cells (hMSCs), ultimately singling out the key role of microtopography, roughness and substrate's stiffness. While substrate's stiffness predominantly affected hMSC spreading, the modulation of the channels' design affected the neuronal architecture's complexity and guided the morphological transition of hMSCs. Finally, the combined analysis of tubulin expression and cell morphology allowed us to cast new light on the predominant role of the microtopography over substrate's stiffness in the process of hMSCs neurogenic differentiation.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Animals , Cell Differentiation , Cells, Cultured , Ganglia, Spinal , Humans , Neurons , Rats
8.
ACS Appl Mater Interfaces ; 13(27): 32251-32262, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34181389

ABSTRACT

Poly(vinyl chloride) (PVC) is the most used biomedical polymer worldwide. PVC is a stable and chemically inert polymer. However, microorganisms can colonize PVC producing biomedical device-associated infections. While surface modifications of PVC can help improve the antimicrobial and antiviral properties, the chemically inert nature of PVC makes those modifications challenging and potentially toxic. In this work, we modified the PVC surface using a derivative riboflavin molecule that was chemically tethered to a plasma-treated PVC surface. Upon a low dosage of blue light, the riboflavin tethered to the PVC surface became photochemically activated, allowing for Pseudomonas aeruginosa bacterial biofilm and lentiviral in situ eradication.


Subject(s)
Biofilms/drug effects , Light , Microbial Viability/drug effects , Polyvinyl Chloride/chemistry , Polyvinyl Chloride/pharmacology , Riboflavin/chemistry , Virus Inactivation/drug effects , Bacterial Physiological Phenomena/drug effects , Bacterial Physiological Phenomena/radiation effects , Biofilms/radiation effects , Microbial Viability/radiation effects , Virus Inactivation/radiation effects
9.
Anal Methods ; 12(39): 4734-4741, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32968751

ABSTRACT

Conventional analytical techniques allow for the diagnosis of leukemia, blood and bone marrow cancers, as well as their classification into the different subtypes. However, a better understanding of the cancer treatment through cell apoptosis staging is still required. Evaluation of the timeline and responses of acute promyelocytic leukemia (APL) cells to the arsenic trioxide (ATO) treatment is essential for determining the oral dosage in leukemia prognosis. Here, an Atomic Force Microscopy (AFM) indentation approach has been used to evaluate the mechanical responses of cellular responses of APL cells to ATO treatment, alongside well-established cell viability assays, as a novel method to determine the impact of drugs. In addition, cell morphology was quantified to monitor cellular apoptosis. Viability, morphology and elasticity changes of NB4 cells (derived from Human APL patients) were correlated to different time courses of the ATO treatments. Unveiling the relationships among structural, morphological and nanomechanical properties in response to ATO drug treatment promises to pave the way for novel diagnostic tools for drug screening and for a better understanding of the specific physical and biological effects of drugs on diseased cells.


Subject(s)
Leukemia, Promyelocytic, Acute , Arsenic Trioxide , Cell Line, Tumor , Elasticity , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Microscopy, Atomic Force
10.
Opt Express ; 28(8): 11267-11279, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403641

ABSTRACT

We report ultrafast-laser-induced photochemical, structural, and morphological changes in a polyimide film irradiated at the polymer-glass interface in back-incident geometry. Back-illumination creates locally hot material at the interface leading to a confined photochemical change at the interface and a morphological change through a blister formation. The laser-induced photochemical changes in polyimide resulted in new absorption and luminescence properties in the visible region. The laser-treated polyimide exhibited photoluminescence anisotropy resulting from formation of ordered polymer upon irradiation by linearly polarized ultrashort laser pulses. Confocal fluorescence microscopy resulted in similar observations to the bulk. Reflection-absorption infrared spectroscopy and X-ray photoelectron spectroscopy together indicated confinement of laser-induced chemical changes at the interface.

SELECTION OF CITATIONS
SEARCH DETAIL