Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(17): 11563-11569, 2021 May 04.
Article in English | MEDLINE | ID: mdl-34056312

ABSTRACT

Disposable single-use electrochemical sensor strips were used for quantitative detection of small concentrations of morphine in untreated capillary whole blood. Single-walled carbon nanotube (SWCNT) networks were fabricated on a polymer substrate to produce flexible, reproducible sensor strips with integrated reference and counter electrodes, compatible with industrial-scale processes. A thin Nafion coating was used on top of the sensors to enable direct electrochemical detection in whole blood. These sensors were shown to detect clinically relevant concentrations of morphine both in buffer and in whole blood samples. Small 38 µL finger-prick blood samples were spiked with 2 µL of morphine solution of several concentrations and measured without precipitation of proteins or any other further pretreatment. A linear range of 0.5-10 µM was achieved in both matrices and a detection limit of 0.48 µM in buffer. In addition, to demonstrate the applicability of the sensor in a point-of-care device, single-determination measurements were done with capillary samples from three subjects. An average recovery of 60% was found, suggesting that the sensor only measures the free, unbound fraction of the drug. An interference study with other opioids and possible interferents showed the selectivity of the sensor. This study clearly indicates that these Nafion/SWCNT sensor strips show great promise as a point-of-care rapid test for morphine in blood.

2.
Anal Chem ; 92(19): 13017-13024, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32842738

ABSTRACT

A disposable electrochemical test strip for the quantitative point-of-care (POC) determination of acetaminophen (paracetamol) in plasma and finger-prick whole blood was fabricated. The industrially scalable dry transfer process of single-walled carbon nanotubes (SWCNTs) and screen printing of silver were combined to produce integrated electrochemical test strips. Nafion coating stabilized the potential of the Ag reference electrode and enabled the selective detection in spiked plasma as well as in whole blood samples. The test strips were able to detect acetaminophen in small 40 µL samples with a detection limit of 0.8 µM and a wide linear range from 1 µM to 2 mM, well within the required clinical range. After a simple 1:1 dilution of plasma and whole blood, a quantitative detection with good recoveries of 79% in plasma and 74% in whole blood was achieved. These results strongly indicate that these electrodes can be used directly to determine the unbound acetaminophen fraction without the need for any additional steps. The developed test strip shows promise as a rapid and simple POC quantitative acetaminophen assay.


Subject(s)
Acetaminophen/blood , Electrochemical Techniques , Fingers , Nanotubes, Carbon/chemistry , Reagent Strips/chemistry , Blood Specimen Collection , Humans
3.
Opt Express ; 28(14): 19997-20006, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680068

ABSTRACT

We study the saturable absorption properties of single-walled carbon nanotubes (SWCNTs) with a large diameter of 2.2 nm and the corresponding exciton resonance at a wavelength of 2.4 µm. At resonant excitation, a large modulation depth of approximately 30 % and a small saturation fluence of a few tens of µJ/cm2 are evaluated. The temporal response is characterized by an instantaneous rise and a subpicosecond recovery. We also utilize the SWCNTs to realize sub-50 fs, self-start mode locking in a Cr:ZnS laser, revealing that the film thickness is an important parameter that affects the possible pulse energy and duration. The results prove that semiconductor SWCNTs with tailored diameters exceeding 2 nm are useful for passive mode locking in the mid-infrared range.

4.
Anal Chem ; 92(12): 8218-8227, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32412733

ABSTRACT

Oxycodone is a strong opioid frequently used as an analgesic. Although proven efficacious in the management of moderate to severe acute pain and cancer pain, use of oxycodone imposes a risk of adverse effects such as addiction, overdose, and death. Fast and accurate determination of oxycodone blood concentration would enable personalized dosing and monitoring of the analgesic as well as quick diagnostics of possible overdose in emergency care. However, in addition to the parent drug, several metabolites are always present in the blood after a dose of oxycodone, and to date, there is no electrochemical data available on any of these metabolites. In this paper, a single-walled carbon nanotube (SWCNT) electrode and a Nafion-coated SWCNT electrode were used, for the first time, to study the electrochemical behavior of oxycodone and its two main metabolites, noroxycodone and oxymorphone. Both electrode types could selectively detect oxycodone in the presence of noroxycodone and oxymorphone. However, we have previously shown that addition of a Nafion coating on top of the SWCNT electrode is essential for direct measurements in complex biological matrices. Thus, the Nafion/SWCNT electrode was further characterized and used for measuring clinically relevant concentrations of oxycodone in buffer solution. The limit of detection for oxycodone with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5-10 µM in buffer solution. This study shows that the fabricated Nafion/SWCNT sensor has potential to be applied in clinical concentration measurements.


Subject(s)
Electrochemical Techniques , Fluorocarbon Polymers/chemistry , Nanotubes, Carbon/chemistry , Oxycodone/analysis , Electrodes , Molecular Structure , Oxycodone/metabolism , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...