Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 72: 171-187, 2022 07.
Article in English | MEDLINE | ID: mdl-35301123

ABSTRACT

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Subject(s)
Secretory Pathway , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Recombinant Proteins , Secretory Pathway/genetics
3.
Sci Rep ; 10(1): 18996, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149219

ABSTRACT

The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin.


Subject(s)
Gene Expression Profiling/methods , HEK293 Cells/cytology , Metabolomics/methods , Cell Adhesion , Cell Culture Techniques , Cell Movement , Cholesterol/biosynthesis , Gene Dosage , Gene Expression Regulation , Gene Regulatory Networks , HEK293 Cells/chemistry , Humans , Protein Engineering
4.
Nat Commun ; 8(1): 1026, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044101

ABSTRACT

The use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo. We show that oxyntomodulin, a peptide with potential to treat obesity and diabetes, self-assembles into a stable nanofibril formulation which subsequently dissociates to release active peptide and produces a pharmacological effect in vivo. The subcutaneous administration of the nanofibrils in rats results in greatly prolonged exposure, with a constant oxyntomodulin bioactivity detectable in serum for at least 5 days as compared to free oxyntomodulin which is undetectable after only 4 h. Such an approach is simple, cost-efficient and generic in addressing the limitations of peptide therapeutics.


Subject(s)
Obesity/drug therapy , Oxyntomodulin/pharmacokinetics , Peptide Hormones/pharmacokinetics , Animals , Glucose/metabolism , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oxyntomodulin/administration & dosage , Oxyntomodulin/blood , Oxyntomodulin/chemistry , Peptide Hormones/administration & dosage , Peptide Hormones/blood , Peptide Hormones/chemistry , Rats , Rats, Sprague-Dawley
5.
J Am Chem Soc ; 138(50): 16259-16265, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27998088

ABSTRACT

Aggregation and amyloid fibril formation of peptides and proteins is a widespread phenomenon. It has serious implications in a range of areas from biotechnological and pharmaceutical applications to medical disorders. The aim of this study was to develop a better understanding of the mechanism of aggregation and amyloid fibrillation of an important pharmaceutical, human glucagon-like peptide-1 (GLP-1). GLP-1 is a 31-residue hormone peptide that plays an important role regulating blood glucose levels, analogues of which are used for treatment of type 2 diabetes. Amyloid fibril formation of GLP-1 was monitored using thioflavin T fluorescence as a function of peptide concentration between pH 7.5 and 8.2. Results from these studies establish that there is a highly unusual pH-induced switch in GLP-1 aggregation kinetics. At pH 8.2, the kinetics are consistent with a nucleation-polymerization mechanism for fibril formation. However, at pH 7.5, highly unusual kinetics are observed, where the lag time increases with increasing peptide concentration. We attribute this result to the formation of off-pathway species together with an initial slow, unimolecular step where monomer converts to a different monomeric form that forms on-pathway oligomers and ultimately fibrils. Estimation of the pKa values of all the ionizable groups in GLP-1 suggest it is the protonation/deprotonation of the N-terminus that is responsible for the switch with pH. In addition, a range of biophysical techniques were used to characterize (1) the start point of the aggregation reaction and (2) the structure and stability of the fibrils formed. These results show that the off-pathway species form under conditions where GLP-1 is most prone to form oligomers.


Subject(s)
Glucagon-Like Peptide 1/chemistry , Protein Aggregates , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Kinetics , Protein Multimerization , Protein Structure, Quaternary
6.
Immunol Lett ; 81(1): 41-8, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-11841844

ABSTRACT

We have shown that two of the matrix metalloproteinases (MMPs), matrilysin and stromelysin-1, are capable of cleaving all of the human IgG subclasses. The cleavage occurs at a conserved site in the CH(2) domain of the heavy chain of IgG, releasing a single chain Fc-like fragment. We have not been able to demonstrate cleavage of IgA, IgD, IgM or IgE classes, which lack the cleavage site, nor could we show cleavage of IgG by collagenase, gelatinase, macrophage metalloelastase or membrane-type (MT)-MMP. This cleavage of IgG, by separating the antigen-binding (Fabprime prime or minute)(2) from the Fc portion, will remove much of the immunoglobulins' functionality, e.g. complement fixation, Fc receptor binding. In the context of a tumour producing matrilysin or stromelysin, this may represent a way in which the tumour protects itself from ADCC. In inflamed or damaged tissues where plasma protein leakage occurs, degradation by MMPs may be a mechanism for clearance of IgG.


Subject(s)
Immunoglobulin G/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 7/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cloning, Molecular , Cricetinae , Humans , Molecular Sequence Data , Papain/metabolism , Pepsin A/metabolism , Recombinant Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...