Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 109: 103522, 2020 09.
Article in English | MEDLINE | ID: mdl-32783923

ABSTRACT

We consider the task of Medical Concept Normalization (MCN) which aims to map informal medical phrases such as "loosing weight" to formal medical concepts, such as "Weight loss". Deep learning models have shown high performance across various MCN datasets containing small number of target concepts along with adequate number of training examples per concept. However, scaling these models to millions of medical concepts entails the creation of much larger datasets which is cost and effort intensive. Recent works have shown that training MCN models using automatically labeled examples extracted from medical knowledge bases partially alleviates this problem. We extend this idea by computationally creating a distant dataset from patient discussion forums. We extract informal medical phrases and medical concepts from these forums using a synthetically trained classifier and an off-the-shelf medical entity linker respectively. We use pretrained sentence encoding models to find the k-nearest phrases corresponding to each medical concept. These mappings are used in combination with the examples obtained from medical knowledge bases to train an MCN model. Our approach outperforms the previous state-of-the-art by 15.9% and 17.1% classification accuracy across two datasets while avoiding manual labeling.


Subject(s)
Electronic Health Records , Neural Networks, Computer , Humans
2.
J Biomed Inform ; 94: 103205, 2019 06.
Article in English | MEDLINE | ID: mdl-31085324

ABSTRACT

Identifying medical persona from a social media post is critical for drug marketing, pharmacovigilance and patient recruitment. Medical persona classification aims to computationally model the medical persona associated with a social media post. We present a novel deep learning model for this task which consists of two parts: Convolutional Neural Networks (CNNs), which extract highly relevant features from the sentences of a social media post and average pooling, which aggregates the sentence embeddings to obtain task-specific document embedding. We compare our approach against standard baselines, such as Term Frequency - Inverse Document Frequency (TF-IDF), averaged word embedding based methods and popular neural architectures, such as CNN-Long Short Term Memory (CNN-LSTM) and Hierarchical Attention Networks (HANs). Our model achieves an improvement of 19.7% for classification accuracy and 20.1% for micro F1 measure over the current state-of-the-art. We eliminate the need for manual labeling by employing a distant supervision based method to obtain labeled examples for training the models. We thoroughly analyze our model to discover cues that are indicative of a particular persona. Particularly, we use first derivative saliency to identify the salient words in a particular social media post.


Subject(s)
Health Personnel , Neural Networks, Computer , Social Media , Deep Learning , Humans , Pharmacovigilance
3.
BMC Bioinformatics ; 19(Suppl 8): 212, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29897321

ABSTRACT

BACKGROUND: Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. METHODS: Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. RESULTS: To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. CONCLUSION: In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/pathology , Information Storage and Retrieval , Neural Networks, Computer , Supervised Machine Learning , Databases as Topic , Humans , Social Media
SELECTION OF CITATIONS
SEARCH DETAIL
...