Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405152

ABSTRACT

Luciferase-based reporters provide a key measurement approach in a broad range of applications, from in vitro high-throughput screening to whole animal imaging. For example, luminescence intensity is widely used to measure promoter activity, protein expression levels, and cell growth. However, luminescence intensity measurements are subject to quantitative irregularities caused by luminescence decay and variation in reporter expression level. In contrast, bioluminescence resonance energy transfer (BRET) sensors provide the advantages of luciferase-based reporters but overcome the aforementioned irregularities because of the inherently ratiometric readout. Here, we generated a new ratiometric BRET sensor of ATP (ARSeNL-ATP detection with a Ratiometric mScarlet-NanoLuc sensor), and we demonstrated that it provides a stable and robust readout across protein, cell, and whole animal tissue contexts. The ARSeNL sensor was engineered by screening a color palette of sensors utilizing variants of the high photon flux NanoLuc luciferase as donors and a panel of red fluorescent proteins as acceptors. We found that the novel combination of NanoLuc and mScarlet exhibited the largest dynamic range, with a 5-fold change in the BRET ratio upon saturation with ATP. Importantly, the NanoLuc-mScarlet BRET pair provided a large spectral separation between luminescence emission channels that is compatible with green and red filter sets extensively used in typical biological microscopes and animal imaging systems. Using this new sensor, we showed that the BRET ratio was independent of luminescence intensity decay and sensor expression level, and the BRET ratio faithfully reported differences in live-cell energy metabolism whether in culture or within mouse tissue. In particular, BRET analyte sensors have not been used broadly in tissue contexts, and thus, in principle, our sensor could provide a new tool for in vivo imaging of metabolic status.


Subject(s)
Adenosine Triphosphate/analysis , Fluorescence Resonance Energy Transfer/methods , Adenosine Triphosphate/metabolism , Animals , Female , HEK293 Cells , Humans , Luminescent Measurements , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Protein Engineering , Single-Cell Analysis , Red Fluorescent Protein
2.
Sensors (Basel) ; 19(15)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344821

ABSTRACT

Purinergic signals, such as extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP), mediate intercellular communication and stress responses throughout mammalian tissues, but the dynamics of their release and clearance are still not well understood. Although physiochemical methods provide important insight into physiology, genetically encoded optical sensors have proven particularly powerful in the quantification of signaling in live specimens. Indeed, genetically encoded luminescent and fluorescent sensors provide new insights into ATP-mediated purinergic signaling. However, new tools to detect extracellular ADP are still required. To this end, in this study, we use protein engineering to generate a new genetically encoded sensor that employs a high-affinity bacterial ADP-binding protein and reports a change in occupancy with a change in the Förster-type resonance energy transfer (FRET) between cyan and yellow fluorescent proteins. We characterize the sensor in both protein solution studies, as well as live-cell microscopy. This new sensor responds to nanomolar and micromolar concentrations of ADP and ATP in solution, respectively, and in principle it is the first fully-genetically encoded sensor with sufficiently high affinity for ADP to detect low levels of extracellular ADP. Furthermore, we demonstrate that tethering the sensor to the cell surface enables the detection of physiologically relevant nucleotide release induced by hypoosmotic shock as a model of tissue edema. Thus, we provide a new tool to study purinergic signaling that can be used across genetically tractable model systems.


Subject(s)
Adenosine Diphosphate/isolation & purification , Adenosine Triphosphate/isolation & purification , Biosensing Techniques , Edema/diagnosis , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Cell Communication/genetics , Edema/genetics , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Humans , Luminescent Proteins/chemistry , Osmotic Pressure , Protein Binding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...