Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 91: 519-530, 2021 01.
Article in English | MEDLINE | ID: mdl-33176182

ABSTRACT

Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.


Subject(s)
Microglia , Minocycline , Animals , Depression/drug therapy , Hippocampus , Mice , Minocycline/pharmacology , Neurogenesis , Phagocytosis
2.
J Neurosci ; 37(46): 11271-11284, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29038237

ABSTRACT

Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin ß3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvß3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvß3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvß3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvß3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin ß3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin ß3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin ß3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin ß3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.


Subject(s)
Brain/physiology , Gain of Function Mutation/genetics , Genetic Variation/genetics , Integrin beta3/genetics , Proline/genetics , Serotonin/genetics , Animals , Female , Gene Knock-In Techniques/methods , Humans , Integrin beta3/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proline/metabolism , Protein Binding/physiology , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
3.
Neurobiol Stress ; 2: 51-58, 2015.
Article in English | MEDLINE | ID: mdl-26634222

ABSTRACT

Recent studies indicate multiple roles for integrin αvß3 in adult neurons, including response to pharmacological agents such as cocaine and selective serotonin reuptake inhibitors. In this study, we examined the role of the integrin ß3 gene (Itgb3) in the response to environmental stimuli by subjecting Itgb3+/+ and Itgb3-/- mice to unpredictable chronic mild stressors. We found that genetic abrogation of integrin ß3 expression elicits an exaggerated vulnerability to chronic unpredictable stress in the open field test. In this test, chronic stress elicited significant decreases in stereotypic behavior and horizontal locomotor activity, including increases in anxiety behaviors. Mild chronic stress led to reductions in dopamine turnover in midbrains of Itgb3+/+, but not Itgb3-/- mice, suggesting a disruption of stress-dependent regulation of DA homeostasis. Chronic stress elicited altered synaptic expression of syntaxin and synaptophysin in midbrains of Itgb3-/- mice, when compared to Itgb3+/+. Semi-quantitative Western blot studies revealed that the synaptic expression, but not total tissue expression, of multiple signaling proteins is correlated with integrin αv levels in the midbrain. Moreover, loss of integrin ß3 expression modifies this correlation network. Together, these findings demonstrate that Itgb3-/- mice display a pattern of changes indicating disrupted regulation of midbrain synaptic systems involved in conferring resilience to mild stressors.

4.
Neuropsychopharmacology ; 40(8): 2015-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25684064

ABSTRACT

Converging lines of evidence have identified genetic interactions between the serotonin transporter (SERT) gene and ITGB3, which encodes the ß3 subunit that forms the αIIbß3 and αvß3 integrin receptor complexes. Here we examine the consequences of haploinsufficiency in the mouse integrin ß3 subunit gene (Itgb3) on SERT function and selective 5-hydroxytryptamine (5-HT) reuptake inhibitor (SSRI) effectiveness in vivo. Biochemical fractionation studies and immunofluorescent staining of murine brain slices reveal that αvß3 receptors and SERTs are enriched in presynaptic membranes from several brain regions and that αvß3 colocalizes with a subpopulation of SERT-containing synapses in raphe nuclei. Notably, we establish that loss of a single allele of Itgb3 in murine neurons is sufficient to decrease 5-HT uptake by SERT in midbrain synaptosomes. Pharmacological assays to elucidate the αvß3-mediated mechanism of reduced SERT function indicate that decreased integrin ß3 subunit expression scales down the population size of active SERT molecules and, as a consequence, lowers the effective dose of SSRIs. These data are consistent with the existence of a subpopulation of SERTs that are tightly modulated by integrin αvß3 and significantly contribute to global SERT function at 5-HT synapses in the midbrain. Importantly, our screen of a normal human population for single nucleotide polymorphisms in human ITGB3 identified a variant associated with reductions in integrin ß3 expression levels that parallel our mouse findings. Thus, polymorphisms in human ITGB3 may contribute to the differential responsiveness of select patients to SSRIs.


Subject(s)
Antidepressive Agents/pharmacology , Gene Expression Regulation/genetics , Integrin beta3/metabolism , Polymorphism, Genetic/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Analysis of Variance , Animals , Biological Transport/drug effects , Biological Transport/genetics , Gene Expression Regulation/drug effects , Humans , Infant , Integrin beta3/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/ultrastructure , Phosphopyruvate Hydratase/metabolism , Raphe Nuclei/cytology , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Synaptic Membranes/drug effects , Synaptic Membranes/metabolism
5.
Neurochem Int ; 73: 122-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24083985

ABSTRACT

Dysfunctions in serotonin (5-hydroxytryptamine, 5-HT) systems have been associated with several psychiatric illnesses, including anxiety, depression, obsessive-compulsive disorders and autism spectrum disorders. Convergent evidence from genetic analyses of human subjects has implicated the integrin ß3 subunit gene (ITGB3) as a modulator of serotonergic systems via genetic interactions with the 5-HT transporter gene (SLC6A4, SERT). While genetic interactions may result from contributions of each gene at several levels, we hypothesize that ITGB3 modulates the 5-HT system at the level of the synapse, through the actions of integrin αvß3. Here we utilized a genetic approach in mouse models to examine Itgb3 contributions to SERT function both in the context of normal and reduced SERT expression. As integrin αvß3 is expressed in postsynaptic membranes, we isolated synaptoneurosomes, which maintain intact pre- and post-synaptic associations. Citalopram binding revealed significant Slc6a4-driven reductions in SERT expression in midbrain synapses, whereas no significant changes were observed in hippocampal or cortical projections. Expecting corresponding changes to SERT function, we also measured 5-HT uptake activity in synaptoneurosomal preparations. Itgb3 single heterozygous mice displayed significant reductions in 5-HT Vmax, with no changes in Km, in midbrain preparations. However, in the presence of both Itgb3 and Slc6a4 heterozygozity, 5-HT uptake was similar to wild-type levels, revealing a significant Slc6a4 by Itgb3 genetic interaction in the midbrain. Similar findings were observed in cortical preparations, whereas in the hippocampus, most Vmax changes were driven solely by Slc6a4. Our findings provide evidence that integrin αvß3 is involved in the regulation of serotonergic systems in some, but not all 5-HT synapses, revealing novel contributions to synaptic specificity within the central nervous system.


Subject(s)
Brain Chemistry/genetics , Integrin beta3/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin/metabolism , Animals , Citalopram/metabolism , Mice , Mice, Knockout , Selective Serotonin Reuptake Inhibitors/metabolism , Synapses/metabolism , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...