Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 216: 774-784, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30391900

ABSTRACT

European populations of black-necked grebes (Podiceps nigricollis) congregate every year to moult at the salt ponds of the Odiel Marshes (SW Spain). However, the Odiel Marshes are part of one of the most metal-polluted coastal estuaries in the world, which may pose risks to wildlife. We assessed the exposure of grebes to metal pollution during the critical moulting period in the Odiel Marshes and its potential to cause adverse health effects. Levels of metals in red blood pellet (as a biomarker of exposure), plasma carotenoids, eye redness, and body condition (as biomarkers of effects) were studied. Metal content was also analyzed in the brine shrimp Artemia parthenogenetica, the most important food for grebes in this hypersaline ecosystem during the moulting period. Results showed that, in comparison to toxicity thresholds, grebes had relatively high blood levels of arsenic (As), mercury (Hg) and zinc (Zn). The high loads found in Artemia and the way blood levels vary during the moulting period indicate that shrimp consumption may be the main route of metal exposure for grebes. Plasma carotenoids and body condition showed a positive association with exposure to As, while the relationship of lutein-like carotenoids with Hg accumulation was negative at the beginning of the moulting period to become positive afterwards. Moreover, eye redness was negatively affected by As accumulation. Factors including food resource availability, seasonal fluctuations in physiological status, and interannual variations in the degree of environmental contamination should be considered in monitoring efforts when using moult migrant waterbirds as sentinel species.


Subject(s)
Metals/adverse effects , Animals , Birds , Environmental Monitoring , Environmental Pollution , Metals/chemistry , Molting , Spain , Wetlands
2.
Int J Parasitol ; 43(1): 73-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23220358

ABSTRACT

To reach the final host (greater flamingos), the cestode Flamingolepis liguloides alters the behaviour of its intermediate host, the brine shrimp, Artemia parthenogenetica, causing it to spend more time close to the water surface. During summer 2010, we showed that the prevalence of this cestode was consistently higher at the top of the water column in the Odiel salt pans in south-western Spain. We used stable nitrogen (N) and carbon (C) isotopic analysis to test the hypothesis that cestodes also alter resource use by Artemia. In early summer, we compared stable isotopes in infected hosts at the surface with those from uninfected hosts at the bottom of the water column. In late summer, we compared infected and uninfected Artemia from the bottom. δ(15)N was consistently enriched in infected individuals compared with uninfected hosts, especially in Artemia with multiple infections of F. liguloides (family Hymenolepididae) and those with mixed infections of F. liguloides and cestodes of the family Dilepididae. Infected individuals from the surface were enriched in δ(13)C compared with uninfected ones from the bottom, but the opposite was found when comparing uninfected and infected Artemia from the same depth. This may be caused by the increase in lipid concentration in infected Artemia. Isolated cysticercoids of F. liguloides were significantly enriched in δ(13)C compared with cysticercoids in infected hosts, but surprisingly were not enriched in N. Our findings illustrate the way cestodes can alter food webs and highlight the importance of considering the parasitic status of prey in studies of trophic ecology in saline wetlands.


Subject(s)
Artemia/physiology , Artemia/parasitology , Cestoda/pathogenicity , Animals , Behavior, Animal , Carbon Isotopes/metabolism , Food Chain , Isotope Labeling/methods , Lipid Metabolism , Nitrogen Isotopes/metabolism , Spain
3.
Article in English | MEDLINE | ID: mdl-18222102

ABSTRACT

The red-knobbed coot Fulica cristata experienced a dramatic population decline in Spain, where the common coot F. atra does not face conservation problems. This is puzzling because both species have similar ecologies. It has been suggested that habitat alterations affected the quality of food plants, and this impacted differentially both coots. To verify this, we conducted experiments to determine the assimilation efficiency of both species in relation to food quality. Two types of diets differing in fibre content (commercial food and Potamogeton pectinatus) were offered to captive red-knobbed and common coots, during both spring and autumn. We examined variations in faecal particle size among coot species and diets, indicative of the facility with which food can be assimilated, and used the stable isotope technique to study differences between coot species in stable isotope fractionations from consumption to excretion. Faecal particle size was larger in red-knobbed than in common coots when fibre content was high, but was similar when it was low. Faecal particle sizes were larger in autumn, when fibre content was higher, than in spring. In general, delta(15)N in faeces of red-knobbed coots was greater than in faeces of common coots. These results suggest that the digestive efficiency of the red-knobbed coot was lower than that of the common coot, and that the differences increased when the fibre content in food plants increased. Managers should try to make available to coots wetland habitat with high quality food, which may be facilitated by prolonging the hydroperiods.


Subject(s)
Animal Feed , Birds/metabolism , Feces , Isotopes , Plants, Edible/metabolism , Adaptation, Physiological , Analysis of Variance , Animals , Digestion/physiology , Ecosystem , Particle Size , Plants, Edible/chemistry , Seasons , Spain , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...