Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Am J Pathol ; 194(6): 941-957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493927

ABSTRACT

Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.


Subject(s)
Adaptor Proteins, Vesicular Transport , Bile Ducts , Cholestasis , Epithelial Cells , Fibrosis , Animals , Adaptor Proteins, Vesicular Transport/metabolism , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cholestasis/pathology , Cholestasis/metabolism , Bile Ducts/pathology , Cell Proliferation , Interleukin-6/metabolism , Mice, Knockout , Mice, Inbred C57BL , Leukemia Inhibitory Factor/metabolism , Signal Transduction
2.
Lab Invest ; 104(2): 100308, 2024 02.
Article in English | MEDLINE | ID: mdl-38135154

ABSTRACT

Obesity predisposes to metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, and type 2 diabetes. Accumulating evidence suggests a complex role of NLR family pyrin domain containing 3 (NLRP3) inflammasome function in multiple manifestations of the metabolic syndrome, with contradictory results. Its broad expression and pleiotropic functions during obesity led us to investigate the contribution of its expression in nonimmune versus immune cells to the development of obesity and MAFLD. Bone marrow chimerism was used to target NLRP3 deficiency to immune (ImmuneΔNlrp3) versus nonimmune (NonimmuneΔNlrp3) cells. Irradiated WT mice reconstituted with WT bone marrow served as controls. Mice were fed a 60% high-fat diet for 16 weeks. NonimmuneΔNlrp3 mice gained less weight and displayed reduced liver and epididymal white adipose tissue (epiWAT) mass. They also exhibited reduced adipocyte hypertrophy and increased epiWAT adipogenesis and lipolysis. Notable was the diminished hepatic steatosis in NonimmuneΔNlrp3 livers, which persisted even following equilibration of their body weight to that of the control. This was accompanied by a decline in liver triglycerides and in expression of transcriptional modules involved with lipid uptake, storage, and de novo lipogenesis. Thermogenic pathways in brown adipose tissue were comparable to control mice, but an elevation was observed in the genes encoding for lipid transporters and fatty acid oxidation. In contrast, deletion of NLRP3 in the immune cell compartment had limited effects on obesity and hepatic steatosis. Collectively, our results outline a prominent role for NLRP3 in nonimmune cells in facilitating MAFLD during constant energy surplus.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Inflammasomes/metabolism , Liver/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Triglycerides/metabolism
3.
Allergy ; 78(2): 464-476, 2023 02.
Article in English | MEDLINE | ID: mdl-36070083

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease, characterized by eosinophil-rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL-4 and IL-13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL-4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL-4 and IL-13 and whether the type II IL-4 receptor (comprised of the IL-4Rα chain in association with IL-13Rα1) mediates this effect has not been determined. METHODS: Experimental EoE was induced in WT, Il13ra1-/- , and Krt14Cre /Il13ra1fl/fl mice by skin-sensitized using 4-ethoxymethylene-2-phenyl-2-oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. RESULTS: Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL-13 antibody-based neutralization experiments blocked antigen-induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single-cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL-13Rα1 in epithelial cells and that EoE signature genes correlated with IL-13 expression compared with IL-4. CONCLUSIONS: We demonstrate a definitive role for IL-13 signaling via IL-13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL-4R as a future therapeutic target.


Subject(s)
Eosinophilic Esophagitis , Humans , Mice , Animals , Eosinophilic Esophagitis/pathology , Interleukin-13 Receptor alpha1 Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-13/metabolism , Epithelial Cells/metabolism
4.
Cell Rep ; 37(7): 110026, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788631

ABSTRACT

Liver-resident macrophages Kupffer cells (KCs) and infiltrating Ly6Chi monocytes both contribute to liver tissue regeneration in various pathologies but also to disease progression upon disruption of orderly consecutive regeneration cascades. Little is known about molecular pathways that regulate their differentiation, maintenance, or inflammatory behavior during injury. Here, we show that copper metabolism MURR1 domain (COMMD)10-deficient KCs adopt liver-specific identity. Strikingly, COMMD10 deficiency in KCs and in other tissue-resident macrophages impedes their homeostatic survival, leading to their continuous replacement by Ly6Chi monocytes. While COMMD10 deficiency in KCs mildly worsens acetaminophen-induced liver injury (AILI), its deficiency in Ly6Chi monocytes results in exacerbated and sustained hepatic damage. Monocytes display unleashed inflammasome activation and a reduced type I interferon response and acquire "neutrophil-like" and lipid-associated macrophage differentiation fates. Collectively, COMMD10 appears indispensable for KC and other tissue-resident macrophage survival and is an important regulator of Ly6Chi monocyte fate decisions and reparative behavior in the diseased liver.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Kupffer Cells/metabolism , Animals , Antigens, Ly/immunology , Antigens, Ly/metabolism , Cell Differentiation/genetics , Cell Survival , Hematopoiesis , Inflammasomes/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/genetics , Kupffer Cells/physiology , Liver/cytology , Liver/injuries , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism
5.
Front Immunol ; 12: 643144, 2021.
Article in English | MEDLINE | ID: mdl-33717200

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) communicates information on energy availability from the gut to peripheral tissues. Disruption of its signaling in myeloid immune cells during high-fat diet (HFD)-induced obesity impairs energy homeostasis due to the unrestrained metabolically deleterious actions of S100A8/A9 alarmin. White adipose tissue (WAT) type 2 immune cell networks are important for maintaining metabolic and energy homeostasis and limiting obesity-induced inflammation. Nevertheless, the consequences of losing immune cell GIP receptor (GIPR) signaling on type 2 immunity in WAT remains unknown. Bone marrow (BM) chimerism was used to generate mice with GIPR (Gipr-/- BM) and GIPR/S100A8/A9 (Gipr-/- /S100a9-/- BM) deletion in immune cells. These mice were subjected to short (5 weeks) and progressive (14 weeks) HFD regimens. GIPR-deficiency was also targeted to myeloid cells by crossing Giprfl/fl mice and Lyz2cre/+ mice (LysMΔGipr ). Under both short and progressive HFD regimens, Gipr-/- BM mice exhibited altered expression of key type 2 immune cytokines in the epididymal visceral WAT (epiWAT), but not in subcutaneous inguinal WAT. This was further linked to declined representation of type 2 immune cells in epiWAT, such as group 2 innate lymphoid cells (ILC2), eosinophils, and FOXP3+ regulatory T cells (Tregs). Co-deletion of S100A8/A9 in Gipr-/- immune cells reversed the impairment of type 2 cytokine expression in epiWAT, suggesting a mechanistic role for this alarmin in type 2 immune suppression. LysMΔGipr mice on HFD also displayed altered expression of type 2 immune mediators, highlighting that GIPR-deficiency in myeloid immune cells is responsible for the impairment of type 2 immune networks. Finally, abrogated GIPR signaling in immune cells also affected adipocyte fraction cells, inducing their increased production of the beiging interfering cytokine IL-10 and stress- related type 2 cytokine IL-13. Collectively, these findings attribute an important role for GIPR in myeloid immune cells in supporting WAT type 2 immunity.


Subject(s)
Adipose Tissue, White/immunology , Lymphocytes/immunology , Obesity/immunology , Receptors, Gastrointestinal Hormone/physiology , Adipose Tissue, White/metabolism , Animals , Calgranulin A/physiology , Calgranulin B/physiology , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Signal Transduction/physiology , Thermogenesis
6.
Matrix Biol ; 96: 47-68, 2021 02.
Article in English | MEDLINE | ID: mdl-33246101

ABSTRACT

Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular-matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular-matrix is general and relevant to a wide range of diseases.


Subject(s)
Biomarkers/metabolism , Colitis, Ulcerative/pathology , Extracellular Matrix/pathology , Interleukin-10/genetics , Animals , Case-Control Studies , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Female , Gene Knockdown Techniques , Humans , Machine Learning , Male , Mice , Piroxicam/adverse effects , Prognosis , Proteomics
7.
Immunity ; 53(3): 479-481, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937148

ABSTRACT

Liver macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). In this issue of Immunity, Tran et al. and Remmerie et al. reveal that Ly6Chi monocytes in NASH replace dying resident Kupffer cells, while concomitantly are differentiating into distinct lipid associated macrophages.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Kupffer Cells , Lipids , Liver , Monocytes
8.
Front Immunol ; 11: 1592, 2020.
Article in English | MEDLINE | ID: mdl-32849539

ABSTRACT

Cholesterol-laden, foam macrophages constitute the most characteristic component of human atherosclerotic plaques. Persistent uptake of oxLDLs results in accumulation of lipid bodies inside the cells and determines their phenotype and subsequent functions. In this work, we describe the phenotype of human monocyte-derived foam cells obtained by differentiation in the constant presence of oxLDLs for 30 days (prolonged-hMDFCs). Although neither the total cellular nor the cell surface expression of Toll-like receptors (TLR) was regulated by oxLDLs, the prolonged-hMDFCs changed dramatically their responsiveness to TLR ligands and inactivated bacteria. Using multiplex technology, we observed an acute decline in cytokine and chemokine production after surface and endosomal TLR stimulation with the exception of TLR2/6 triggering with agonists Pam2CSK4 and MALP-2. We also noted significant reduction of some surface receptors which can have accessory function in recognition of particulate antigens (CD47, CD81, and CD11b). In contrast, the prolonged-hMDFCs responded to inflammasome activation by LPS/nigericin with extensive, necrotic type cell death, which was partially independent of caspase-1. This pyroptosis-like cell death was aggravated by necrostatin-1 and rapamycin. These findings identify a potential contribution of mature foam cells to inflammatory status by increasing the immunogenic cell death burden. The observed cross-talk between foam cell death pathways may lead to recognition of a potential new marker for atherosclerosis disease severity. Overall, our study demonstrates that, in contrast to other cellular models of foam cells, the prolonged-hMDFCs acquire a functional phenotype which may help understanding the role of foam cells in the pathogenesis of atherosclerosis.


Subject(s)
Foam Cells/immunology , Foam Cells/metabolism , Host-Pathogen Interactions , Lipoproteins, LDL/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phenotype , Biomarkers , Cells, Cultured , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/immunology
9.
Front Immunol ; 11: 480, 2020.
Article in English | MEDLINE | ID: mdl-32296422

ABSTRACT

Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) proteins and enzymes, especially fibrillary collagens, and represents a major cause of morbidity and mortality worldwide. Lysyl oxidases (LOXs) drive covalent crosslinking of collagen fibers, thereby promoting stabilization and accumulation of liver fibrosis while limiting its resolution. Here we show in a carbon tetrachloride (CCl4)-induced liver fibrosis murine model that treatment with a novel anti-lysyl oxidase like 2 (LOXL2) neutralizing antibody, which targets extracellular LOXL2, significantly improves fibrosis resolution. LOXL2 inhibition following the onset of fibrosis accelerated and augmented collagen degradation. This was accompanied by increased localization of reparative monocyte-derived macrophages (MoMFs) in the proximity of fibrotic fibers and their representation in the liver. These cells secreted collagenolytic matrix metalloproteinases (MMPs) and, in particular, the membrane-bound MT1-MMP (MMP-14) collagenase. Inducible and selective ablation of infiltrating MoMFs negated the increased "on-fiber" accumulation of MMP-14-expressing MoMFs and the accelerated collagenolytic activity observed in the anti-LOXL2-treated mice. Many studies of liver fibrosis focus on preventing the progression of the fibrotic process. In contrast, the therapeutic mechanism of LOXL2 inhibition presented herein aims at reversing existing fibrosis and facilitating endogenous liver regeneration by paving the way for collagenolytic macrophages.


Subject(s)
Amino Acid Oxidoreductases/antagonists & inhibitors , Collagen/metabolism , Liver Cirrhosis/pathology , Macrophages/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Collagen/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL
11.
Sci Rep ; 9(1): 8566, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189986

ABSTRACT

Localization of rectal tumors is a challenge in minimally invasive surgery due to the lack of tactile sensation. We had developed liposomal indocyanine green (Lip-ICG) for localization of rectal tumor. In this study we evaluated the effects of liposome size and lipid PEGylation on imaging. We used an endoscopically-guided orthotopic experimental rectal cancer model in which tumor fluorescence was determined at different time points after intravenous (i.v.) administration of Lip-ICG and PEGylated liposomes (PEG-Lip-ICG). Signal intensity was measured by tumor-to-background ratio (TBR), or normalized TBR (compared to TBR of free ICG). Fluorescence microscopy of tumor tissue was performed to determine fluorescence localization within the tissue and blood vessels. Liposomes of 60 nm showed an increased TBR compared with free ICG at 12 hours after i.v. injection: normalized TBR (nTBR) = 3.11 vs. 1, respectively (p = 0.006). Larger liposomes (100 nm and 140 nm) had comparable signal to free ICG (nTBR = 0.98 ± 0.02 and 0.78 ± 0.08, respectively), even when additional time points were examined (0.5, 3 and 24 hours). PEG-Lip- ICG were more efficient than Lip-ICG (TBR = 4.2 ± 0.18 vs. 2.5 ± 0.12, p < 0.01) presumably because of reduced uptake by the reticulo-endothelial system. ICG was found outside the capillaries in tumor margins. We conclude that size and lipid modification impact imaging intensity.


Subject(s)
Fluorescent Dyes/pharmacology , Indocyanine Green/pharmacology , Optical Imaging , Rectal Neoplasms/blood supply , Rectal Neoplasms/diagnostic imaging , Animals , Fluorescent Dyes/chemistry , Indocyanine Green/chemistry , Liposomes , Rectal Neoplasms/metabolism , Rectal Neoplasms/pathology
12.
iScience ; 14: 147-163, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-30959277

ABSTRACT

Staphylococcus aureus is a major cause of infectious disease. Liver Kupffer cells (KCs) are responsible for sequestering and destroying S. aureus through the phagolysosomal pathway. Proteins belonging to the COMMD family emerge as key intracellular regulators of protein trafficking, but the role of COMMD10 in macrophage-mediated S. aureus eradication is unknown. Here we report that COMMD10 in macrophages was necessary for its timely elimination, as demonstrated with two different S. aureus subspecies. In vivo, COMMD10-deficient liver KCs exhibited impaired clearance of systemic S. aureus infection. S. aureus-infected COMMD10-deficient macrophages exhibited impaired activation of the transcription factor EB, resulting in reduced lysosomal biogenesis. Moreover, S. aureus-initiated phagolysosomal maturation and function were significantly attenuated in COMMD10-deficient macrophages. Finally, expression of COMMD/CCDC22/CCDC93 complex, linked to phagolysosomal maturation, was reduced by COMMD10 deficiency. Collectively, these results support an important role for COMMD10 in instructing macrophage phagolysosomal biogenesis and maturation during S. aureus infection.

13.
Methods Mol Biol ; 1944: 203-220, 2019.
Article in English | MEDLINE | ID: mdl-30840245

ABSTRACT

The tumor microenvironment is a heterogeneous tissue that in addition to tumor cells, contain tumor-associated cell types such as immune cells, fibroblasts, and endothelial cells. Considerably important in the tumor microenvironment is its noncellular component, namely, the extracellular matrix (ECM). In particular, the collagenous matrix is subjected to significant alterations in its composition and structure that create a permissive environment for tumor growth, invasion, and dissemination. Among tumor-infiltrating immune cells, tumor-associated macrophages (TAMs) are numerous in the tumor stroma and are locally educated to mediate important biological functions that profoundly affect tumor initiation, growth, and dissemination. While the influence of TAMs and mechanical properties of the collagenous matrix on tumor invasion and progression have been comprehensively investigated individually, their interaction within the complex tumor microenvironment was overlooked. This review summarizes accumulating evidence that indicate the existence of an intricate tumorigenic crosstalk between TAMs and collagenous matrix. A better mechanistic comprehension of this reciprocal interplay may open a novel arena for cancer therapeutics.


Subject(s)
Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/pathology , Fibroblasts/pathology , Macrophages/pathology , Neoplasms/pathology , Tumor Microenvironment , Carcinogenesis/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Macrophages/metabolism , Neoplasms/metabolism
14.
Cancer Immunol Res ; 7(3): 388-400, 2019 03.
Article in English | MEDLINE | ID: mdl-30665890

ABSTRACT

Immunotherapies targeting T lymphocytes are revolutionizing cancer therapy but only benefit a subset of patients, especially in colorectal cancer. Thus, additional insight into the tumor microenvironment (TME) is required. Eosinophils are bone marrow-derived cells that have been largely studied in the context of allergic diseases and parasite infections. Although tumor-associated eosinophilia has been described in various solid tumors including colorectal cancer, knowledge is still missing regarding eosinophil activities and even the basic question of whether the TME promotes eosinophil recruitment without additional manipulation (e.g., immunotherapy) is unclear. Herein, we report that eosinophils are recruited into developing tumors during induction of inflammation-induced colorectal cancer and in mice with the Apcmin /+ genotype, which develop spontaneous intestinal adenomas. Using adoptive transfer and cytokine neutralization experiments, we demonstrate that the TME supported prolonged eosinophil survival independent of IL5, an eosinophil survival cytokine. Tumor-infiltrating eosinophils consisted of degranulating eosinophils and were essential for tumor rejection independently of CD8+ T cells. Transcriptome and proteomic analysis revealed an IFNγ-linked signature for intratumoral eosinophils that was different from that of macrophages. Our data establish antitumorigenic roles for eosinophils in colorectal cancer. These findings may facilitate the development of pharmacologic treatments that could unleash antitumor responses by eosinophils, especially in colorectal cancer patients displaying eosinophilia.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Eosinophils/immunology , Animals , Cell Degranulation , Cell Line, Tumor , Cell Survival , Chemokine CCL11/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytotoxicity, Immunologic , Disease Models, Animal , Eosinophils/drug effects , Gene Expression Profiling , Humans , Immunotherapy, Adoptive , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Proteomics , Signal Transduction , Tumor Microenvironment/immunology
15.
Nat Metab ; 1(1): 58-69, 2019 01.
Article in English | MEDLINE | ID: mdl-32694806

ABSTRACT

Enteroendocrine cells relay energy-derived signals to immune cells to signal states of nutrient abundance and control immunometabolism. Emerging data suggest that the gut-derived nutrient-induced incretin glucose-dependent insulinotropic polypeptide (GIP) operates at the interface of metabolism and inflammation. Here we show that high-fat diet (HFD)-fed mice with immune cell-targeted GIP receptor (GIPR) deficiency exhibit greater weight gain, insulin resistance, hepatic steatosis and significant myelopoiesis concomitantly with impaired energy expenditure and inguinal white adipose tissue (WAT) beiging. Expression of the S100 calcium-binding protein S100A8 was increased in the WAT of mice with immune cell-targeted GIPR deficiency and co-deletion of GIPR and the heterodimer S100A8/A9 in immune cells ameliorated the aggravated metabolic and inflammatory phenotype following a HFD. Specific GIPR deletion in myeloid cells identified this lineage as the target of GIP effects. Furthermore, GIP directly downregulated S100A8 expression in adipose tissue macrophages. Collectively, our results identify a myeloid-GIPR-S100A8/A9 signalling axis coupling nutrient signals to the control of inflammation and adaptive thermogenesis.


Subject(s)
Body Weight , Calgranulin A/metabolism , Calgranulin B/metabolism , Gastric Inhibitory Polypeptide/metabolism , Inflammation/etiology , Inflammation/metabolism , Myeloid Cells/metabolism , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Calgranulin A/genetics , Calgranulin B/genetics , Immunity , Immunohistochemistry , Inflammation/pathology , Insulin Resistance/genetics , Mice , Myelopoiesis/genetics , Phenotype , Receptors, Gastrointestinal Hormone/deficiency , Receptors, Gastrointestinal Hormone/metabolism
16.
Oncogene ; 38(6): 794-807, 2019 02.
Article in English | MEDLINE | ID: mdl-30232408

ABSTRACT

Klotho is an anti-aging transmembrane protein, which can be shed and function as a hormone. Accumulating data indicate klotho as a tumor suppressor in a wide array of malignancies and indicate the subdomain KL1 as the active region of the protein. We aimed to study the role of klotho as a tumor suppressor in colorectal cancer. Bioinformatics analyses of TCGA datasets indicated reduced klotho mRNA levels in human colorectal cancer, along with negative regulation of klotho expression by hypermethylation of the promoter and 1st exon, and hypomethylation of an area within the gene. Overexpression or treatment with klotho or KL1 inhibited proliferation of colorectal cancer cells in vitro. The in vivo activity of klotho and KL1 was examined using two models recapitulating development of tumors in the normal colonic environment of immune-competent mice. Treatment with klotho inhibited formation of colon polyps induced by the carcinogen azoxymethane, and KL1 treatment slowed growth of orthotopically-implanted colorectal tumors. Gene expression array revealed that klotho and KL1 expression enhanced the unfolded protein response (UPR) and this was further established by increased levels of spliced XBP1, GRP78 and phosphorylated-eIF2α. Furthermore, attenuation of the UPR partially abrogated klotho tumor suppressor activity. In conclusion, this study indicates klotho as a tumor suppressor in colorectal cancer and identifies, for the first time, the UPR as a pathway mediating klotho activities in cancer. These data suggest that administration of exogenous klotho or KL1 may serve as a novel strategy for prevention and treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Glucuronidase/metabolism , Neoplasm Proteins/metabolism , Unfolded Protein Response , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Databases, Nucleic Acid , Endoplasmic Reticulum Chaperone BiP , Glucuronidase/genetics , Humans , Klotho Proteins , Male , Mice , Neoplasm Proteins/genetics
17.
Front Immunol ; 9: 2623, 2018.
Article in English | MEDLINE | ID: mdl-30487795

ABSTRACT

Ly6Chi monocyte tissue infiltrates play important roles in mediating local inflammation, bacterial elimination and resolution during sepsis and inflammatory bowel disease (IBD). Yet, the immunoregulatory pathways dictating their activity remain poorly understood. COMMD family proteins are emerging as key regulators of signaling and protein trafficking events during inflammation, but the specific role of COMMD10 in governing Ly6Chi monocyte-driven inflammation is unknown. Here we report that COMMD10 curbs canonical and non-canonical inflammasome activity in Ly6Chi monocytes in a model of LPS-induced systemic inflammation. Accordingly, its deficiency in myeloid cells, but not in tissue resident macrophages, resulted in increased Ly6Chi monocyte liver and colonic infiltrates, elevated systemic cytokine storm, increased activation of caspase-1 and-11 in the liver and colon, and augmented IL-1ß production systemically and specifically in LPS-challenged circulating Ly6Chi monocytes. These inflammatory manifestations were accompanied by impaired intestinal barrier function with ensuing bacterial dissemination to the mesenteric lymph nodes and liver leading to increased mortality. The increased inflammasome activity and intestinal barrier leakage were ameliorated by the inducible ablation of COMMD10-deficient Ly6Chi monocytes. In consistence with these results, COMMD10-deficiency in Ly6Chi monocytes, but not in intestinal-resident lamina propria macrophages, led to increased IL-1ß production and aggravated colonic inflammation in a model of DSS-induced colitis. Finally, COMMD10 expression was reduced in Ly6Chi monocytes and their corresponding human CD14hi monocytes sorted from mice subjected to DSS-induced colitis or from IBD patients, respectively. Collectively, these results highlight COMMD10 as a negative regulator of Ly6Chi monocyte inflammasome activity during systemic inflammation and IBD.


Subject(s)
Colitis/immunology , Inflammasomes/metabolism , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Monocytes/immunology , Animals , Antigens, Ly/metabolism , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lipopolysaccharides/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Tight Junctions
18.
Front Immunol ; 9: 1852, 2018.
Article in English | MEDLINE | ID: mdl-30158929

ABSTRACT

The therapy of primary biliary cholangitis (PBC) has lagged behind other autoimmune diseases despite significant improvements in our understanding of both immunological and molecular events that lead to loss of tolerance to the E2 component of pyruvate dehydrogenase, the immunodominant autoepitope of PBC. It is well known that Ly6Chi monocytes are innate immune cells infiltrating inflammatory sites that are dependent on the expression of C-C motif chemokine receptor 2 (CCR2) for emigration from bone marrow. Importantly, humans with PBC have a circulating monocyte pro-inflammatory phenotype with macrophage accumulation in portal tracts. We have taken advantage of an inducible chemical xenobiotic model of PBC and recapitulated the massive infiltration of monocytes to portal areas. To determine the clinical significance, we immunized both CCR2-deficient mice and controls with 2OA-BSA and noted that CCR2 deficiency is protective for the development of autoimmune cholangitis. Importantly, because of the therapeutic potential, we focused on inhibiting monocyte infiltration through the use of cenicriviroc (CVC), a dual chemokine receptor CCR2/CCR5 antagonist shown to be safe in human trials. Importantly, treatment with CVC resulted in amelioration of all aspects of disease severity including serum total bile acids, histological severity score, and fibrosis stage. In conclusion, our results indicate a major role for Ly6Chi monocytes and for CCR2 in PBC pathogenesis and suggest that inhibition of this axis by CVC should be explored in humans through the use of clinical trials.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Cholangitis/immunology , Cholangitis/metabolism , Monocytes/immunology , Monocytes/metabolism , Receptors, CCR2/metabolism , Animals , Autoimmune Diseases/complications , Autoimmune Diseases/pathology , Biomarkers , Chemokines/metabolism , Cholangitis/complications , Cholangitis/pathology , Disease Models, Animal , Disease Susceptibility , Female , Humans , Imidazoles/pharmacology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Monocytes/drug effects , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/genetics , Sulfoxides , THP-1 Cells
19.
FEBS J ; 285(4): 734-751, 2018 02.
Article in English | MEDLINE | ID: mdl-29106767

ABSTRACT

Phagocytes, such as tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs), are abundant in the stroma of experimental and human tumors and are locally educated to mediate important biological functions that profoundly affect tumor initiation, growth, and dissemination. Of considerable importance is the noncellular component of the tumor microenvironment, namely-the extracellular matrix (ECM). This milieu is often overlooked due to its complexity and vast heterogeneity. Biophysical and biomechanical cues provided by the dynamically evolving tumorigenic ECM fundamentally modulate every behavioral facet of the cancer cells and of associated stromal cells. In this review, we discuss the intricate interplay between phagocytes and ECM that are lined up to support tumor progression. TAMs and TANs shape the tumorigenic ECM by providing key matrix-remodeling enzymes and structural proteins and in turn, the altered tumor ECM modulates their migration and function. A better mechanistic comprehension of this reciprocal dependence has exciting implications for the development of new therapeutic options for cancer.


Subject(s)
Extracellular Matrix/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Phagocytes/metabolism , Antineoplastic Agents/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Phagocytes/drug effects , Phagocytes/pathology , Tumor Microenvironment/drug effects
20.
Sci Rep ; 7(1): 10379, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871174

ABSTRACT

Erythropoietin (EPO) is the main hormone driving mammalian erythropoiesis, with activity mediated via the surface receptor, EPO-R, on erythroid progenitor cells. Recombinant human EPO is currently used clinically for the treatment of anemia in patients with end-stage renal disease, and in certain cancer patients suffering from anemia induced either by the tumor itself or by chemotherapy. EPO-R expression is also detected in non-erythroid cells, including macrophages present in the peritoneum, spleen, and bone marrow (BM). Here we demonstrate that Kupffer cells (KCs) - the liver-resident macrophages - are EPO targets. We show that, in vitro, EPO initiated intracellular signalling and enhanced phagocytosis in a rat KC line (RKC-2) and in sorted KCs. Moreover, continuous EPO administration in mice, resulted in an increased number of KCs, up-regulation of liver EPO-R expression and elevated production of the monocyte chemoattractant CCL2, with corresponding egress of Ly6Chi monocytes from the BM. In a model of acute acetaminophen-induced liver injury, EPO administration increased the recruitment of Ly6Chi monocytes and neutrophils to the liver. Taken together, our results reveal a new role for EPO in stimulating KC proliferation and phagocytosis, and in recruiting Ly6Chi monocytes in response to liver injury.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Erythropoietin/genetics , Kupffer Cells/cytology , Receptors, Erythropoietin/metabolism , Recombinant Proteins/administration & dosage , Animals , Antigens, Ly/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Disease Models, Animal , Erythropoietin/administration & dosage , Erythropoietin/pharmacology , Humans , Kupffer Cells/metabolism , Liver/drug effects , Liver/metabolism , Mice , Phagocytosis , Rats , Recombinant Proteins/pharmacology , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...