Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Interv Neuroradiol ; : 15910199221145760, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36573263

ABSTRACT

BACKGROUND: Current imaging modalities underestimate the severity of intracranial atherosclerotic disease (ICAD). High resolution vessel wall imaging (HR-VWI) MRI is a powerful tool in characterizing plaques. We aim to show that HR-VWI MRI is more accurate at detecting and characterizing intracranial plaques compared to digital subtraction angiography (DSA), time-of-flight (TOF) MRA, and computed tomography angiogram (CTA). METHODS: Patients with symptomatic ICAD prospectively underwent 7T HR-VWI. We calculated: degree of stenosis, plaque burden (PB), and remodeling index (RI). The sensitivity of detecting a culprit plaque for each modality as well as the correlations between different variables were analyzed. Interobserver agreement on the determination of a culprit plaque on every imaging modality was evaluated. RESULTS: A total of 44 patients underwent HR-VWI. Thirty-four patients had CTA, 18 TOF-MRA, and 18 DSA. The sensitivity of plaque detection was 88% for DSA, 78% for TOF-MRA, and 76% for CTA. There's significant positive correlation between PB and degree of stenosis on HR-VWI MRI (p < 0.001), but not between PB and degree of stenosis in DSA (p = 0.168), TOF-MRA (p = 0.144), and CTA (p = 0.253). RI had a significant negative correlation with degree of stenosis on HR-VWI MRI (p = 0.003), but not on DSA (p = 0.783), TOF-MRA (p = 0.405), or CTA (p = 0.751). The best inter-rater agreement for culprit plaque detection was with HR-VWI (p = 0.001). CONCLUSIONS: The degree of stenosis measured by intra-luminal techniques does not fully reflect the true extent of ICAD. HR-VWI is a more accurate tool in characterizing atherosclerotic plaques and may be the default imaging modality in clinical practice.

2.
Front Neurol ; 12: 764063, 2021.
Article in English | MEDLINE | ID: mdl-34956050

ABSTRACT

Biomechanical computational simulation of intracranial aneurysms has become a promising method for predicting features of instability leading to aneurysm growth and rupture. Hemodynamic analysis of aneurysm behavior has helped investigate the complex relationship between features of aneurysm shape, morphology, flow patterns, and the proliferation or degradation of the aneurysm wall. Finite element analysis paired with high-resolution vessel wall imaging can provide more insight into how exactly aneurysm morphology relates to wall behavior, and whether wall enhancement can describe this phenomenon. In a retrospective analysis of 23 unruptured aneurysms, finite element analysis was conducted using an isotropic, homogenous third order polynomial material model. Aneurysm wall enhancement was quantified on 2D multiplanar views, with 14 aneurysms classified as enhancing (CRstalk≥0.6) and nine classified as non-enhancing. Enhancing aneurysms had a significantly higher 95th percentile wall tension (µ = 0.77 N/cm) compared to non-enhancing aneurysms (µ = 0.42 N/cm, p < 0.001). Wall enhancement remained a significant predictor of wall tension while accounting for the effects of aneurysm size (p = 0.046). In a qualitative comparison, low wall tension areas concentrated around aneurysm blebs. Aneurysms with irregular morphologies may show increased areas of low wall tension. The biological implications of finite element analysis in intracranial aneurysms are still unclear but may provide further insights into the complex process of bleb formation and aneurysm rupture.

SELECTION OF CITATIONS
SEARCH DETAIL
...