Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Genet Sel Evol ; 56(1): 33, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698321

ABSTRACT

BACKGROUND: Recursive models are a category of structural equation models that propose a causal relationship between traits. These models are more parameterized than multiple trait models, and they require imposing restrictions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components derived from the multiple trait mixed model can be converted into estimates under several recursive models through LDL' or block-LDL' transformations. RESULTS: The procedure was employed on a dataset comprising five traits (birth weight-BW, weight at 90 days-W90, weight at 210 days-W210, cold carcass weight-CCW and conformation-CON) from the Pirenaica beef cattle breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple-trait mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs sampler were subsequently used to estimate the variance components within three distinct recursive models. CONCLUSIONS: The LDL' or block-LDL' transformations applied to the variance component estimates achieved from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequisite of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing data when conducting inference within the realm of recursive models.


Subject(s)
Models, Genetic , Animals , Cattle/genetics , Bayes Theorem , Phenotype , Breeding/methods , Breeding/standards , Birth Weight/genetics , Pedigree , Quantitative Trait, Heritable
2.
J Anim Breed Genet ; 141(2): 153-162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37888514

ABSTRACT

Crossbreeding plays a pivotal role within pig breeding programmes, aiming to maximize heterosis and improve reproductive traits in crossbred maternal lines. Nevertheless, there is evidence indicating that the performance of reciprocal crosses between two genetic lines might exhibit variability. These variations in performance can be attributed to differences in the correlations between gametic effects, acting as either sire or dam, within purebred and crossbred populations. To address this issue, we propose a multivariate gametic model that incorporates up to four correlated gametic effects for each parental population. The model is employed on a data set comprising litter size data (total number of piglets born-TNB- and number of piglets born alive-NBA-) derived from a reciprocal cross involving two Iberian pig populations: Entrepelado and Retinto. The data set comprises 6933 records from 1564 purebred Entrepelado (EE) sows, 4995 records from 1015 Entrepelado × Retinto (ER) crosses, 2977 records from 756 Retinto × Entrepelado (RE) crosses and 7497 records from 1577 purebred Retinto (RR) sows. The data set is further supplemented by a pedigree encompassing 6007 individual-sire-dam entries. The statistical model also included the order of parity (with six levels), the breed of the service sire (five levels) and the herd-year-season effects (141 levels). Additionally, the model integrates random dominant and permanent environmental sow effects. The analysis employed a Bayesian approach, and the results revealed all the posterior estimates of the gametic correlations to be positive. The range of the posterior mean estimates of the correlations varied across different gametic effects and traits, with a range between 0.04 (gametic correlation between the paternal effects for purebred and the maternal for crossbred in Retinto) and 0.53 (gametic correlation between the paternal effects for purebred and the paternal for crossbred in Entrepelado). Furthermore, the posterior mean variance estimates of the maternal gametic effects were consistently surpassed those for paternal effects within all four populations. The results suggest the possible influence of imprinting effects on the genetic control of litter size, and underscore the importance of incorporating crossbred data into the breeding value predictions for purebred individuals.


Subject(s)
Breeding , Hybridization, Genetic , Humans , Pregnancy , Swine/genetics , Animals , Female , Bayes Theorem , Reproduction , Hybrid Vigor , Crosses, Genetic
3.
Genes (Basel) ; 14(10)2023 10 15.
Article in English | MEDLINE | ID: mdl-37895290

ABSTRACT

Inbreeding depression is expected to be more pronounced in fitness-related traits, such as pig litter size. Recent studies have suggested that the genetic determinism of inbreeding depression may be heterogeneous across the genome. Therefore, the objective of this study was to conduct a genomic scan of the whole pig autosomal genome to detect the genomic regions that control inbreeding depression for litter size in two varieties of Iberian pigs (Entrepelado and Retinto). The datasets consisted of 2069 (338 sows) and 2028 (327 sows) records of litter size (Total Number Born and Number Born Alive) for the Entrepelado and Retinto varieties. All sows were genotyped using the Geneseek GGP PorcineHD 70 K chip. We employed the Unfavorable Haplotype Finder software to extract runs of homozygosity (ROHs) and conducted a mixed-model analysis to identify highly significant differences between homozygous and heterozygous sows for each specific ROH. A total of eight genomic regions located on SSC2, SSC5, SSC7, SSC8, and SSC13 were significantly associated with inbreeding depression, housing some relevant genes such as FSHR, LHCGR, CORIN, AQP6, and CEP120.


Subject(s)
Inbreeding Depression , Pregnancy , Swine/genetics , Animals , Female , Litter Size/genetics , Inbreeding Depression/genetics , Genotype , Genome , Genomics
4.
J Anim Breed Genet ; 140(6): 596-606, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37287409

ABSTRACT

It is generally assumed that parents make a genetically equal contribution to their offspring, but this assumption might not always hold. This is because the expression of a gene can be blocked by methylation during gametogenesis, and the degree of methylation can depend on the origin of the parental gene (imprinting) or by preferential management associated with genetic merit. The first consequences of this for quantitative genetics is that the mean phenotypes of reciprocal heterozygotes need no longer be the same, as would be expected according to Mendelian heritage. We analysed three mare reproductive traits (reproductive efficiency, age at first foaling and foaling number) and three morphological traits (height at withers, thoracic circumference, and scapula-ischial length) in the Pura Raza Española (PRE) horse population, which possesses a deep and reliable pedigree, making it a perfect breed for analysing the quantitative effect of parent-of-origin. The number of animals analysed ranged from 44,038 to 144,191, all of them with both parents known. The model comparison between a model without parent-of-origin effects and three different models with parent-of-origin effects revealed that both maternal and paternal gametic effects influence all the analysed traits. The maternal gametic effect had a higher influence on most traits, accounting for between 3% and 11% of the total phenotypic variance, while the paternal gametic effect accounted for a higher proportion of variance in one trait, age at first foaling (4%). As expected, the Pearson's correlations between additive breeding values of models that consider parent-of-origin and that do not consider parent-of-origin were very high; however, the percentage of coincident animals slightly decreases when comparing animals with the highest estimated breeding values. Ultimately, this work demonstrates that parent-of-origin effects exist in horse gene transmission from a quantitative point of view. Additionally, including an estimate of the parent-of-origin effect within the PRE horse breeding program could be a great tool for a better parent's selection and that could be of interest for breeders, as this value will determine whether the animals acquire genetic categories and are much more highly valued.


Subject(s)
Reproduction , Animals , Horses/genetics , Female , Patient Selection , Phenotype , Alleles , Reproduction/genetics , Pedigree
5.
Animals (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37238078

ABSTRACT

INGA FOOD, S.A. initiated a crossbreeding program between two Iberian pig varieties, Retinto (R) and Entrepelado (E), with the goal of producing a hybrid sow (F1). Several studies have been conducted to evaluate its productive performance, and these studies have revealed differences in litter size between the two reciprocal crosses, suggesting the presence of genomic imprinting effects. To further investigate these effects, this study introduces a multivariate gametic model designed to estimate gametic correlations between paternal and maternal effects originating from both genetic backgrounds involved in the reciprocal crosses. The dataset consisted of 1258 records (the total number born-TNB and the number born alive-NBA) from 203 crossbred dams for the Entrepelado (sire) × Retinto (dam) cross and 700 records from 125 crossbred dams for the Retinto (sire) × Entrepelado (dam) cross. All animals were genotyped using the GeneSeek® GPP Porcine 70 K HDchip (Illumina Inc., San Diego, CA, USA). The results indicated that the posterior distribution of the gametic correlation between paternal and maternal effects was distinctly different between the two populations. Specifically, in the Retinto population, the gametic correlation showed a positive skew with posterior probabilities of 0.78 for the TNB and 0.80 for the NBA. On the other hand, the Entrepelado population showed a posterior probability of a positive gametic correlation between paternal and maternal effects of approximately 0.50. The differences in the shape of the posterior distribution of the gametic correlations between paternal and maternal effects observed in the two varieties may account for the distinct performance outcomes observed in the reciprocal crosses.

6.
Eur J Neurol ; 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484631

ABSTRACT

INTRODUCTION: The aim of this study is to describe the frequency and distribution of SOD1 mutations in Spain, and to explore those factors contributing to their phenotype and prognosis. METHODS: Seventeen centres shared data on amyotrophic lateral sclerosis (ALS) patients carrying pathogenic or likely pathogenic SOD1 variants. Multivariable models were used to explore prognostic modifiers. RESULTS: In 144 patients (from 88 families), 29 mutations (26 missense, 2 deletion/insertion and 1 frameshift) were found in all 5 exons of SOD1, including 7 novel mutations. 2.6% of ALS patients (including 17.7% familial and 1.3% sporadic) were estimated to carry SOD1 mutations. Its frequency varied considerably between regions, due to founder events. The most frequent mutation was p.Gly38Arg (n = 58), followed by p.Glu22Gly (n = 11), p.Asn140His (n = 10), and the novel p.Leu120Val (n = 10). Most mutations were characterized by a protracted course, and some of them by atypical phenotypes. Older age of onset was independently associated with faster disease progression (exp(Estimate) = 1.03 [0.01, 0.05], p = 0.001) and poorer survival (HR = 1.05 [1.01, 1.08], p = 0.007), regardless of the underlying mutation. Female sex was independently associated to faster disease progression (exp(Estimate) = 2.1 [1.23, 3.65], p = 0.012) in patients carrying the p.Gly38Arg mutation, resulting in shorter survival compared with male carriers (236 vs 301 months). CONCLUSIONS: These data may help to evaluate the efficacy of SOD1 targeted treatments, and to expand the number of patients that might benefit from these treatments.

8.
Genet Sel Evol ; 54(1): 46, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761200

ABSTRACT

BACKGROUND: The rabbit cecum hosts and interacts with a complex microbial ecosystem that contributes to the variation of traits of economic interest. Although the influence of host genetics on microbial diversity and specific microbial taxa has been studied in several species (e.g., humans, pigs, or cattle), it has not been investigated in rabbits. Using a Bayes factor approach, the aim of this study was to dissect the effects of host genetics, litter and cage on 984 microbial traits that are representative of the rabbit microbiota. RESULTS: Analysis of 16S rDNA sequences of cecal microbiota from 425 rabbits resulted in the relative abundances of 29 genera, 951 operational taxonomic units (OTU), and four microbial alpha-diversity indices. Each of these microbial traits was adjusted with mixed linear and zero-inflated Poisson (ZIP) models, which all included additive genetic, litter and cage effects, and body weight at weaning and batch as systematic factors. The marginal posterior distributions of the model parameters were estimated using MCMC Bayesian procedures. The deviance information criterion (DIC) was used for model comparison regarding the statistical distribution of the data (normal or ZIP), and the Bayes factor was computed as a measure of the strength of evidence in favor of the host genetics, litter, and cage effects on microbial traits. According to DIC, all microbial traits were better adjusted with the linear model except for the OTU present in less than 10% of the animals, and for 25 of the 43 OTU with a frequency between 10 and 25%. On a global scale, the Bayes factor revealed substantial evidence in favor of the genetic control of the number of observed OTU and Shannon indices. At the taxon-specific level, significant proportions of the OTU and relative abundances of genera were influenced by additive genetic, litter, and cage effects. Several members of the genera Bacteroides and Parabacteroides were strongly influenced by the host genetics and nursing environment, whereas the family S24-7 and the genus Ruminococcus were strongly influenced by cage effects. CONCLUSIONS: This study demonstrates that host genetics shapes the overall rabbit cecal microbial diversity and that a significant proportion of the taxa is influenced either by host genetics or environmental factors, such as litter and/or cage.


Subject(s)
Microbiota , Animals , Bayes Theorem , Cattle , Cecum , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Rabbits , Swine , Weaning
9.
Methods Mol Biol ; 2467: 219-243, 2022.
Article in English | MEDLINE | ID: mdl-35451778

ABSTRACT

The use of genomic information for prediction of future phenotypes or breeding values for the candidates to selection has become a standard over the last decade. However, most procedures for genomic prediction only consider the additive (or substitution) effects associated with polymorphic markers. Nevertheless, the implementation of models that consider nonadditive genetic variation may be interesting because they (1) may increase the ability of prediction, (2) can be used to define mate allocation procedures in plant and animal breeding schemes, and (3) can be used to benefit from nonadditive genetic variation in crossbreeding or purebred breeding schemes. This study reviews the available methods for incorporating nonadditive effects into genomic prediction procedures and their potential applications in predicting future phenotypic performance, mate allocation, and crossbred and purebred selection. Finally, a brief outline of some future research lines is also proposed.


Subject(s)
Genome , Models, Genetic , Animals , Genomics , Genotype , Hybridization, Genetic , Phenotype , Selection, Genetic
10.
Genetics ; 219(2)2021 10 02.
Article in English | MEDLINE | ID: mdl-34849886

ABSTRACT

In animal and plant breeding and genetics, there has been an increasing interest in intermediate omics traits, such as metabolomics and transcriptomics, which mediate the effect of genetics on the phenotype of interest. For inclusion of such intermediate traits into a genetic evaluation system, there is a need for a statistical model that integrates phenotypes, genotypes, pedigree, and omics traits, and a need for associated computational methods that provide estimated breeding values. In this paper, a joint model for phenotypes and omics data is presented, and a formula for the breeding values on individuals is derived. For complete omics data, three equivalent methods for best linear unbiased prediction of breeding values are presented. In all three cases, this requires solving two mixed model equation systems. Estimation of parameters using restricted maximum likelihood is also presented. For incomplete omics data, extensions of two of these methods are presented, where in both cases, the extension consists of extending an omics-related similarity matrix to incorporate individuals without omics data. The methods are illustrated using a simulated data set.


Subject(s)
Breeding , Genomics/methods , Models, Genetic , Animals , Genetic Fitness , Plant Breeding/methods , Plants
12.
J Anim Sci ; 99(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34718615

ABSTRACT

Fertility is a key factor in the economic success of horse farms. However, it has received little attention due to the difficulty of measuring fertility objectively. Since its studbook creation (1912), the Pura Raza Española (PRE) breed has been a closed population and become high in-bred resulting in inbreeding depression (poor phenotypic values). Nevertheless, heterogeneous effects of inbreeding depression have been detected among founders and nonfounders. The aims of this study were (1) to analyze the genetic parameters for reproductive traits in mares of the PRE horse breed and (2) to estimate, for the first time, the inbreeding depression load associated with common ancestors of the breed. A total of 22,799 mares were analyzed. Heritability estimates ranged from 0.05 (interval between first and second foaling) to 0.16 (age at first foaling), whereas inbreeding depression load ratios ranged from 0.06 (parturition efficiency at 6th foaling) to 0.17 (age at first foaling), for a partial inbreeding coefficient of 10%. Although heritability is related to the variability expressed in the population, inbreeding depression load ratios measure the potential variability, whether expressed in the population or not. Most correlations between additive and inbreeding depression load genetic values were significant (P < 0.001) and of low to moderate magnitude. Our results confirm that individual inbreeding depression loads allow us to select horses that have a genetic value resistant to the deleterious effects of inbreeding.


Subject(s)
Inbreeding Depression , Animals , Female , Fertility/genetics , Horses/genetics , Inbreeding , Phenotype , Reproduction
13.
Animals (Basel) ; 11(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200089

ABSTRACT

The breeding scheme in the Rubia Gallega cattle population is based upon traits measured in farms and slaughterhouses. In recent years, genomic evaluation has been implemented by using a ssGBLUP (single-step Genomic Best Linear Unbiased Prediction). This procedure can reparameterized to perform ssGWAS (single-step Genome Wide Association Studies) by backsolving the SNP (single nucleotide polymorphisms) effects. Therefore, the objective of this study was to identify genomic regions associated with the genetic variability in growth and carcass quality traits. We implemented a ssGBLUP by using a database that included records for Birth Weight (BW-327,350 records-), Weaning Weight (WW-83,818-), Cold Carcass Weight (CCW-91,621-), Fatness (FAT-91,475-) and Conformation (CON-91,609-). The pedigree included 464,373 individuals, 2449 of which were genotyped. After a process of filtering, we ended up using 43,211 SNP markers. We used the GBLUP and SNPBLUP model equivalences to obtain the effects of the SNPs and then calculated the percentage of variance explained by the regions of the genome between 1 Mb. We identified 7 regions of the genome for CCW; 8 regions for BW, WW, FAT and 9 regions for CON, which explained the percentage of variance above 0.5%. Furthermore, a number of the genome regions had pleiotropic effects, located at: BTA1 (131-132 Mb), BTA2 (1-11 Mb), BTA3 (32-33 Mb), BTA6 (36-38 Mb), BTA16 (24-26 Mb), and BTA 21 (56-57 Mb). These regions contain, amongst others, the following candidate genes: NCK1, MSTN, KCNA3, LCORL, NCAPG, and RIN3.

14.
J Dairy Sci ; 104(9): 10040-10048, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147228

ABSTRACT

Our study investigated the inbreeding load for fertility traits in the Italian Brown Swiss dairy cattle breed. Fertility traits included continuous traits (i.e., interval from calving to first service, days open, and calving interval) and categorical traits (i.e., calving rate at first insemination and nonreturn date at d 56). We included only records of the first 3 parities of cows that calved between 2010 and 2018. We traced up the pedigree of the cows with records as far as possible, ending up with a total of 73,246 animals. The final data set consisted of 59,864 records from 34,921 cows. We analyzed all models using a Bayesian approach that included a covariate with total inbreeding in addition to systematic, permanent environment, additive genetic, and inbreeding load effects. We then evaluated the trends in heritabilities and ratios of the inbreeding load using a continuum of partial inbreeding coefficients from 0.001 to 0.100 as reference. Posterior estimates of heritabilities tended to decrease across the continuum, whereas ratios of the inbreeding load tended to increase, more noticeably in categorical traits (calving rate at first insemination and nonreturn date at d 56). From the results obtained, we confirmed the presence of heterogeneity in inbreeding depression. We then predicted the inbreeding load effects, which had a low reliability of prediction, explained by having only 513 ancestors generating inbreeding. However, reliability of prediction was high enough for some of the individuals, obtaining a favorable prediction of inbreeding load for a relevant percentage, which improved the phenotypic performance of their inbred descendants. These results make it feasible to implement breeding and management strategies that select ancestors with a favorable inbreeding load prediction. In addition, it opens the possibility to define a global index for the expected consequences of the inbreeding generated by each individual.


Subject(s)
Inbreeding , Lactation , Animals , Bayes Theorem , Cattle/genetics , Female , Fertility/genetics , Reproducibility of Results
15.
J Dairy Sci ; 104(7): 8135-8151, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33896632

ABSTRACT

The rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were treated as compositional. The large complexity of the rumen microbiota was aggregated, through principal component analysis (PCA), into few principal components (PC) that were used as proxies of the core metagenome. The PCA allowed us to condense the huge and fuzzy taxonomical and functional information from the metagenome into a few PC. Bivariate animal models were applied using these PC and methane production as phenotypes. The variability condensed in these PC is controlled by the cow genome, with heritability estimates for the first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being >0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. Enteric methane production was positively associated with relative abundance of eukaryotes (protozoa and fungi) through the first component of the PCA at phylum, class, order, family, and genus. Nanopore long reads allowed the characterization of the core rumen metagenome using whole-metagenome sequencing, and the purposed aggregated variables could be used in animal breeding programs to reduce methane emissions in future generations.


Subject(s)
Methane , Microbiota , Animals , Cattle/genetics , Female , Fermentation , Methane/metabolism , Microbiota/genetics , Rumen/metabolism , Selective Breeding , Spain
16.
PLoS One ; 16(1): e0244920, 2021.
Article in English | MEDLINE | ID: mdl-33417613

ABSTRACT

BACKGROUND: The COVID-19 virus impacts human health and the world economy, causing in Peru, more than 800 thousand infected and a strong recession expressed in a drop of -12% in its economic growth rate for 2020. In this context, the objective of the study is to analyze the dynamics of the short-term behavior of economic activity, as well as to explain the causal relationships in a Pandemic context based on the basic number of spread (Re) of COVID-19 per day. METHODS: An Autoregressive Distributed Lags (ARDL) model was used. RESULTS: A negative and statistically significant impact of the COVID-19 shock was found on the level of economic activity and a long-term Cointegration relationship with an error correction model (CEM), with the expected sign and statistically significant at 1%. CONCLUSION: The Pandemic has behaved as a systemic shock of supply and aggregate demand at the macroeconomic level, which together have an impact on the recession or level of economic activity. The authors propose changing public health policy from an indiscriminate suppression strategy to a targeted, effective and intelligent mitigation strategy that minimizes the risk of human life costs and socioeconomic costs, in a context of uncertainty about the end of the Pandemic and complemented by economic, fiscal and monetary policies that mitigate the economic recession, considering the underlying structural characteristics of the Peruvian economy.


Subject(s)
COVID-19/economics , Economic Development , Economic Recession , Models, Economic , Cost of Illness , Humans , Pandemics , Peru
17.
Genes (Basel) ; 13(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35052355

ABSTRACT

INGA FOOD S. A., as a Spanish company that produces and commercializes fattened pigs, has produced a hybrid Iberian sow called CASTÚA by crossing the Retinto and Entrepelado varieties. The selection of the parental populations is based on selection criteria calculated from purebred information, under the assumption that the genetic correlation between purebred and crossbred performance is high; however, these correlations can be less than one because of a GxE interaction or the presence of non-additive genetic effects. This study estimated the additive and dominance variances of the purebred and crossbred populations for litter size, and calculated the additive genetic correlations between the purebred and crossbred performances. The dataset consisted of 2030 litters from the Entrepelado population, 1977 litters from the Retinto population, and 1958 litters from the crossbred population. The individuals were genotyped with a GeneSeek® GGP Porcine70K HDchip. The model of analysis was a 'biological' multivariate mixed model that included additive and dominance SNP effects. The estimates of the additive genotypic variance for the total number born (TNB) were 0.248, 0.282 and 0.546 for the Entrepelado, Retinto and Crossbred populations, respectively. The estimates of the dominance genotypic variances were 0.177, 0.172 and 0.262 for the Entrepelado, Retinto and Crossbred populations. The results for the number born alive (NBA) were similar. The genetic correlations between the purebred and crossbred performance for TNB and NBA-between the brackets-were 0.663 in the Entrepelado and 0.881 in Retinto poplulations. After backsolving to obtain estimates of the SNP effects, the additive genetic variance associated with genomic regions containing 30 SNPs was estimated, and we identified four genomic regions that each explained > 2% of the additive genetic variance in chromosomes (SSC) 6, 8 and 12: one region in SSC6, two regions in SSC8, and one region in SSC12.


Subject(s)
Genome/genetics , Litter Size/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Crosses, Genetic , Genomics/methods , Genotype , Hybridization, Genetic/genetics , Models, Genetic , Phenotype , Swine
18.
Sci Rep ; 10(1): 21190, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273670

ABSTRACT

Perinatal piglet mortality is an important factor in pig production from economic and animal welfare perspectives; however, the statistical analysis of mortality is difficult because of its categorical nature. Recent studies have suggested that a binomial model for the survival of each specific piglet with a logit approach is appropriate and that recursive relationships between traits are useful for taking into account non-genetic relationships with other traits. In this study, the recursive binomial model is expanded in two directions: (1) the recursive phenotypic dependence among traits is allowed to vary among groups of individuals or crosses, and (2) the binomial distribution is replaced by the multiplicative binomial distribution to account for over or underdispersion. In this study, five recursive multiplicative binomial models were used to obtain estimates of the Dickerson crossbreeding parameters in a diallel cross among three varieties of Iberian pigs [Entrepelado (EE), Torbiscal (TT), and Retinto (RR)]. Records (10,255) from 2110 sows were distributed as follows: EE (433 records, 100 sows), ER (2336, 527), ET (942, 177), RE (806, 196), RR (870, 175), RT (2450, 488), TE (193, 36), TR (1993, 359), and TT (232, 68). Average litter size [Total Number Born (TNB)] and number of stillborns (SB) were 8.46 ± 2.27 and 0.25 ± 0.72, respectively. The overdispersion was evident with all models. The model with the best fit included a linear recursive relationship between TNB and the logit of [Formula: see text] of the multiplicative binomial distribution, and it implies that piglet mortality increases with litter size. Estimates of direct effects showed small differences among populations. The analysis of maternal effects indicated that the dams whose mothers were EE had a larger SB, while dams with RR mothers reduced the probability of born dead. The posterior estimates of heterosis suggested a reduction in SB when the sow is crosbred. The multiplicative binomial distribution provides a useful alternative to the binomial distribution when there is overdispersion in the data. Recursive models can be used for modeling non-genetic relationships between traits, even if the phenotypic dependency between traits varies among environments or groups of individuals. Piglet perinatal mortality increased with TNB and is reduced by maternal heterosis.


Subject(s)
Alleles , Hybridization, Genetic , Models, Statistical , Animals , Humans , Perinatal Mortality , Phenotype , Species Specificity , Stillbirth , Swine
19.
Genet Sel Evol ; 52(1): 62, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081691

ABSTRACT

BACKGROUND: Inbreeding is caused by mating between related individuals and is associated with reduced fitness and performance (inbreeding depression). Several studies have detected heterogeneity in inbreeding depression among founder individuals. Recently, a procedure was developed to predict hidden inbreeding depression load that is associated with founders using the Mendelian sampling of non-founders. The objectives of this study were to: (1) analyse the population structure and general inbreeding, and (2) test this recent approach for predicting hidden inbreeding depression load for four morphological traits and two morphology defects in the Pura Raza Española (PRE) horse breed. RESULTS: The regression coefficients that were calculated between trait performances and inbreeding coefficients demonstrated the existence of inbreeding depression. In total, 58,772,533 partial inbreeding coefficients (Fij) were estimated for the whole PRE population (328,706 horses). We selected the descendants of horses with a Fij ≥ 6.25% that contributed to at least four offspring and for which morphological traits were measured for the subsequent analysis of inbreeding depression load (639 horses). A pedigree was generated with the last five generations (5026 animals) used as the reference population (average inbreeding coefficient of 8.39% and average relatedness coefficient of 10.76%). Heritability estimates ranged from 0.08 (cresty neck) to 0.80 (height at withers), whereas inbreeding depression load ratios ranged from 0.01 (knock knee) to 0.40 (length of shoulder), for an inbreeding coefficient of 10%. Most of the correlations between additive and inbreeding depression load genetic values and correlations between inbreeding depression load genetic values for the different traits were positive or near 0. CONCLUSIONS: Although the average inbreeding depression loads presented negative values, a certain percentage of the animals showed neutral or even positive values. Thus, high levels of inbreeding do not always lead to a decrease in mean phenotypic value or an increase in morphological defects. Hence, individual inbreeding depression loads could be used as a tool to select the most appropriate breeding animals. The possibility of selecting horses that have a high genetic value and are more resistant to the deleterious effects of inbreeding should help improve selection outcomes.


Subject(s)
Horses/genetics , Inbreeding Depression , Quantitative Trait, Heritable , Animals , Genetic Fitness , Genetic Load , Horses/anatomy & histology , Pedigree
20.
Genes (Basel) ; 11(9)2020 09 05.
Article in English | MEDLINE | ID: mdl-32899475

ABSTRACT

Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.


Subject(s)
Chromosomes, Mammalian/genetics , Genetic Markers , Genome , Inheritance Patterns/genetics , Maternal Inheritance/genetics , Polymorphism, Single Nucleotide , Swine/genetics , Animals , Bayes Theorem , Female , Male , Swine/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...