Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15708, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28585529

ABSTRACT

Rapid identification of agronomically important genes is of pivotal interest for crop breeding. One source of such genes are crop wild relative (CWR) populations. Here we used a CWR population of <200 wild beets (B. vulgaris ssp. maritima), sampled in their natural habitat, to identify the sugar beet (Beta vulgaris ssp. vulgaris) resistance gene Rz2 with a modified version of mapping-by-sequencing (MBS). For that, we generated a draft genome sequence of the wild beet. Our results show the importance of preserving CWR in situ and demonstrate the great potential of CWR for rapid discovery of causal genes relevant for crop improvement. The candidate gene for Rz2 was identified by MBS and subsequently corroborated via RNA interference (RNAi). Rz2 encodes a CC-NB-LRR protein. Access to the DNA sequence of Rz2 opens the path to improvement of resistance towards rhizomania not only by marker-assisted breeding but also by genome editing.


Subject(s)
Beta vulgaris/genetics , Contig Mapping , Gene Editing , Genes, Plant , Alleles , Crops, Agricultural/genetics , Disease Resistance/genetics , Ecosystem , Genetic Association Studies , Genetic Variation , Genome, Plant , Geography , Hybridization, Genetic , Open Reading Frames , Phenotype , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide , RNA Interference
2.
Arch Virol ; 154(5): 791-9, 2009.
Article in English | MEDLINE | ID: mdl-19347243

ABSTRACT

Chickpea chlorotic stunt virus (CpCSV), a proposed new member of the genus Polerovirus (family Luteoviridae), has been reported only from Ethiopia. In attempts to determine the geographical distribution and variability of CpCSV, a pair of degenerate primers derived from conserved domains of the luteovirus coat protein (CP) gene was used for RT-PCR analysis of various legume samples originating from five countries and containing unidentified luteoviruses. Sequencing of the amplicons provided evidence for the occurrence of CpCSV also in Egypt, Morocco, Sudan, and Syria. Phylogenetic analysis of the CP nucleotide sequences of 18 samples from the five countries revealed the existence of two geographic groups of CpCSV isolates differing in CP sequences by 8-10%. Group I included isolates from Ethiopia and Sudan, while group II comprised those from Egypt, Morocco and Syria. For distinguishing these two groups, a simple RFLP test using HindIII and/or PvuII for cleavage of CP-gene-derived PCR products was developed. In ELISA and immunoelectron microscopy, however, isolates from these two groups could not be distinguished with rabbit antisera raised against a group-I isolate from Ethiopia (CpCSV-Eth) and a group-II isolate from Syria (CpCSV-Sy). Since none of the ten monoclonal antibodies (MAbs) that had been produced earlier against CpCSV-Eth reacted with group-II isolates, further MAbs were produced. Of the seven MAbs raised against CpCSV-Sy, two reacted only with CpCSV-Sy and two others with both CpCSV-Sy and -Eth. This indicated that there are group I- and II-specific and common (species-specific) epitopes on the CpCSV CP and that the corresponding MAbs are suitable for specific detection and discrimination of CpCSV isolates. Moreover, CpCSV-Sy (group II) caused more severe stunting and yellowing in faba bean than CpCSV-Eth (group I). In conclusion, our data indicate the existence of a geographically associated variation in the molecular, serological and presumably biological properties of CpCSV.


Subject(s)
Capsid Proteins/genetics , Fabaceae/virology , Genetic Variation , Luteoviridae/classification , Phylogeny , Africa, Northern , Amino Acid Sequence , Asia, Western , Geography , Luteoviridae/genetics , Luteoviridae/pathogenicity , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , RNA, Viral/genetics , Sequence Analysis, RNA , Species Specificity , Virulence
3.
J Gen Virol ; 90(Pt 3): 759-763, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19218223

ABSTRACT

Beet necrotic yellow vein virus (BNYVV) A type isolates E12 and S8, originating from areas where resistance-breaking had or had not been observed, respectively, served as starting material for studying the influence of sequence variations in BNYVV RNA 3 on virus accumulation in partially resistant sugar beet varieties. Sub-isolates containing only RNAs 1 and 2 were obtained by serial local lesion passages; biologically active cDNA clones were prepared for RNAs 3 which differed in their coding sequences for P25 aa 67, 68 and 129. Sugar beet seedlings were mechanically inoculated with RNA 1+2/RNA 3 pseudorecombinants. The origin of RNAs 1+2 had little influence on virus accumulation in rootlets. E12 RNA 3 coding for V(67)C(68)Y(129) P25, however, enabled a much higher virus accumulation than S8 RNA 3 coding for A(67)H(68)H(129) P25. Mutants revealed that this was due only to the V(67) 'GUU' codon as opposed to the A(67) 'GCU' codon.


Subject(s)
Amino Acid Substitution , Beta vulgaris/virology , Plant Diseases/virology , Plant Roots/virology , RNA Viruses/pathogenicity , Seedlings/virology , Viral Proteins/genetics , Alanine/chemistry , Molecular Sequence Data , RNA Viruses/genetics , RNA Viruses/metabolism , RNA Viruses/physiology , RNA, Bacterial/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Analysis, DNA , Valine/chemistry , Viral Proteins/chemistry , Viral Proteins/metabolism
4.
Arch Virol ; 153(11): 2139-44, 2008.
Article in English | MEDLINE | ID: mdl-18974924

ABSTRACT

The distribution of various Beet necrotic yellow vein virus (BNYVV) genotypes was studied using beet samples received from Germany and neighbouring countries. Almost exclusively B type BNYVV was detected in Germany, whereas in neighbouring countries BNYVV A types with different compositions of the amino acid tetrad in positions 67-70 of the RNA-3-encoded P25 are widely distributed. Neither A types nor the P type have been able to become established in Germany in the past decades, although there must have been many opportunities for their introduction from neighbouring countries. In one field, however, an RNA-5-containing BNYVV genotype closely resembling the Chinese isolate Har4 was found.


Subject(s)
Beta vulgaris/virology , Plant Diseases/virology , RNA Viruses/genetics , Viral Proteins/genetics , Amino Acid Sequence , Base Sequence , Europe , Genotype , Germany , Molecular Sequence Data , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , Sequence Alignment
5.
Phytopathology ; 96(5): 437-46, 2006 May.
Article in English | MEDLINE | ID: mdl-18944302

ABSTRACT

ABSTRACT Serological analysis of diseased chickpea and faba bean plantings with yellowing and stunting symptoms suggested the occurrence of an unknown or uncommon member of the family Luteoviridae in Ethiopia. Degenerate primers were used for reverse transcriptase-polymerase chain reaction amplification of the viral coat protein (CP) coding region from both chickpea and faba bean samples. Cloning and sequencing of the amplicons yielded nearly identical (96%) nucleotide sequences of a previously unrecognized species of the family Luteoviridae, with a CP amino acid sequence most closely related (identity of approximately 78%) to that of Groundnut rosette assistor virus. The complete genome (5,900 nts) of a faba bean isolate comprised six major open reading frames characteristic of polero-viruses. Of the four aphid species tested, only Aphis craccivora transmitted the virus in a persistent manner. The host range of the virus was confined to a few species of the family Fabaceae. A rabbit antiserum raised against virion preparations cross-reacted unexpectedly with Beet western yellows virus-like viruses. This necessitated the production of murine monoclonal antibodies which, in combination with the polyclonal antiserum, permitted both sensitive and specific detection of the virus in field samples by triple-antibody sandwich, enzyme-linked immunosorbent assay. Because of the characteristic field and greenhouse symptoms in chickpea, the name Chickpea chlorotic stunt virus is proposed for this new member of the genus Polerovirus (family Luteoviridae).

6.
J Virol ; 74(16): 7462-9, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10906199

ABSTRACT

Different mutants of an infectious full-length clone (p35PPV-NAT) of Plum pox virus (PPV) were constructed: three mutants with mutations of the assembly motifs RQ and DF in the coat protein gene (CP) and two CP chimeras with exchanges in the CP core region of Zucchini yellow mosaic virus and Potato virus Y. The assembly mutants were restricted to single infected cells, whereas the PPV chimeras were able to produce systemic infections in Nicotiana benthamiana plants. After passages in different transgenic N. benthamiana plants expressing the PPV CP gene with a complete (plant line 4.30.45.) or partially deleted 3'-nontranslated region (3'-NTR) (plant line 17.27. 4.), characterization of the viral progeny of all mutants revealed restoration of wild-type virus by recombination with the transgenic CP RNA only in the presence of the complete 3'-NTR (4.30.45.). Reconstitution of wild-type virus was also observed following cobombardment of different assembly-defective p35PPV-NAT together with a movement-defective plant expression vector of Potato virus X expressing the intact PPV-NAT CP gene transiently in nontransgenic N. benthamiana plants. Finally, a chimeric recombinant virus was detected after cobombardment of defective p35PPV-NAT with a plant expression vector-derived CP gene from the sour cherry isolate of PPV (PPV-SoC). This chimeric virus has been established by a double recombination event between the CP-defective PPV mutant and the intact PPV-SoC CP gene. These results demonstrate that viral sequences can be tested for recombination events without the necessity for producing transgenic plants.


Subject(s)
Genetic Vectors/genetics , Nicotiana/virology , Plants, Genetically Modified/virology , Plants, Toxic , Plum Pox Virus/genetics , Recombination, Genetic , Base Sequence , Capsid/genetics , Capsid/metabolism , Genes, Viral , Molecular Sequence Data , Mutation , Plant Diseases/virology , Plum Pox Virus/pathogenicity , Potyvirus/genetics , Potyvirus/pathogenicity , RNA, Viral/metabolism , Recombinant Fusion Proteins , Sequence Analysis, DNA , Transcription, Genetic , Virus Assembly
7.
J Gen Virol ; 81(Pt 3): 567-76, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10675394

ABSTRACT

Two different motifs in the coat protein (CP) of Plum pox virus (PPV) (R(3015)Q(3016), D(3059)) were mutated by replacing the respective amino acids with others possessing different chemical properties. The mutated CP genes were introduced into an infectious full-length clone of PPV (p35PPV-NAT) to investigate their influence on systemic infection of transgenic wild-type PPV CP-expressing and non-transgenic plants of Nicotiana benthamiana. All mutants failed to establish systemic infections in non-transgenic N. benthamiana plants, but were complemented by intact CP in transgenic plants. Moreover, the CP-RQ-D mutant (carrying mutations in both the RQ and D motifs) was introduced into p35PPV-NAT engineered to express beta-glucuronidase (GUS) for direct observation of systemic movement and particle assembly in N. benthamiana leaves. GUS-staining revealed that the CP mutant (RQ-D) was restricted to initially infected cells without forming virions. Systemic movement and particle assembly were restored in CP-transgenic N. benthamiana plants. Finally, transgenic N. benthamiana plants were generated that expressed each of the three mutated CP genes. Homozygous T(2) lines were selected and tested for resistance to PPV. Immunogold labelling and electron microscopy revealed that heterologous encapsidation with challenging Chilli veinal mottle virus and Potato virus Y was suppressed in these lines. In addition, assembly mutants did not complement CP-defective p35PPV-NAT. The possible use of modified viral CP genes for the production of virus-resistant transgenic plants, thereby reducing the putative risks of heterologous encapsidation and complementation, is discussed.


Subject(s)
Capsid/genetics , Genes, Viral , Plum Pox Virus/genetics , Genetic Complementation Test , Mutation , Plants, Genetically Modified , Plum Pox Virus/pathogenicity , Plum Pox Virus/physiology , Suppression, Genetic , Transformation, Genetic , Virulence/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...