Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Biomed Inform ; 147: 104528, 2023 11.
Article in English | MEDLINE | ID: mdl-37858852

ABSTRACT

MOTIVATION: Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD: We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS: We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.


Subject(s)
Drug Repositioning , Neural Networks, Computer , Drug Development , Learning
3.
Math Biosci Eng ; 20(5): 8892-8932, 2023 03 09.
Article in English | MEDLINE | ID: mdl-37161227

ABSTRACT

OBJECTIVE: Quantification of disease-disease association (DDA) enables the understanding of disease relationships for discovering disease progression and finding comorbidity. For effective DDA strength calculation, there is a need to address the main challenge of integration of various biomedical aspects of DDA is to obtain an information rich disease representation. MATERIALS AND METHODS: An enhanced and integrated DDA framework is developed that integrates enriched literature-based with concept-based DDA representation. The literature component of the proposed framework uses PubMed abstracts and consists of improved neural network model that classifies DDAs for an enhanced literature-based DDA representation. Similarly, an ontology-based joint multi-source association embedding model is proposed in the ontology component using Disease Ontology (DO), UMLS, claims insurance, clinical notes etc. Results and Discussion: The obtained information rich disease representation is evaluated on different aspects of DDA datasets such as Gene, Variant, Gene Ontology (GO) and a human rated benchmark dataset. The DDA scores calculated using the proposed method achieved a high correlation mainly in gene-based dataset. The quantified scores also shown better correlation of 0.821, when evaluated on human rated 213 disease pairs. In addition, the generated disease representation is proved to have substantial effect on correlation of DDA scores for different categories of disease pairs. CONCLUSION: The enhanced context and semantic DDA framework provides an enriched disease representation, resulting in high correlated results with different DDA datasets. We have also presented the biological interpretation of disease pairs. The developed framework can also be used for deriving the strength of other biomedical associations.


Subject(s)
Neural Networks, Computer , Semantics , Humans , Disease Progression , Gene Ontology
4.
Math Biosci Eng ; 20(5): 9530-9571, 2023 03 21.
Article in English | MEDLINE | ID: mdl-37161255

ABSTRACT

MOTIVATION: In vitro experiment-based drug-target interaction (DTI) exploration demands more human, financial and data resources. In silico approaches have been recommended for predicting DTIs to reduce time and cost. During the drug development process, one can analyze the therapeutic effect of the drug for a particular disease by identifying how the drug binds to the target for treating that disease. Hence, DTI plays a major role in drug discovery. Many computational methods have been developed for DTI prediction. However, the existing methods have limitations in terms of capturing the interactions via multiple semantics between drug and target nodes in a heterogeneous biological network (HBN). METHODS: In this paper, we propose a DTiGNN framework for identifying unknown drug-target pairs. The DTiGNN first calculates the similarity between the drug and target from multiple perspectives. Then, the features of drugs and targets from each perspective are learned separately by using a novel method termed an information entropy-based random walk. Next, all of the learned features from different perspectives are integrated into a single drug and target similarity network by using a multi-view convolutional neural network. Using the integrated similarity networks, drug interactions, drug-disease associations, protein interactions and protein-disease association, the HBN is constructed. Next, a novel embedding algorithm called a meta-graph guided graph neural network is used to learn the embedding of drugs and targets. Then, a convolutional neural network is employed to infer new DTIs after balancing the sample using oversampling techniques. RESULTS: The DTiGNN is applied to various datasets, and the result shows better performance in terms of the area under receiver operating characteristic curve (AUC) and area under precision-recall curve (AUPR), with scores of 0.98 and 0.99, respectively. There are 23,739 newly predicted DTI pairs in total.


Subject(s)
Drug Delivery Systems , Learning , Humans , Neural Networks, Computer , Algorithms , Area Under Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...