Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosystems ; 223: 104822, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36526010

ABSTRACT

Proteins are considered as the working force of cells. Their functionality is determined by their spatial form. In 1973 Anfinsen proposed that the spatial form is determined by the sequence of amino acids in the protein backbone. Yet, the number of possible sequences as well as the possible configurations is very large, making the task of predicting the protein's spatial form very difficult. Many approaches have been proposed, both classical and hybrid quantum - classical ones. We propose a novel hybrid algorithm. In our approach we utilized quantum walks, a proven model for universal quantum computation. We considered a simplified version of the protein backbone to be the evolution space of the quantum walk. The dihedral angles φ and ψ are introduced as phase factors to the quantum walk evolution. We also utilized a cost function to describe the system, where the R - chain, describing the specific amino acid, corresponds to a discrete value, affecting the cost functions value. Our aim is to minimize the cost function value, by updating the dihedral angles for specific regions of the Ramachandran plot, using a Metropolis algorithm.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Proteins/chemistry , Protein Folding , Amino Acids , Algorithms , Protein Conformation
2.
Biology (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35205172

ABSTRACT

Seasonality, rather than annual precipitation levels, is expected to affect the adaptive responses of plant populations under future climate change. To estimate adaptive traits' variation, we conducted a common garden experiment with two beech populations from contrasting climatic origins (Evros with longer drought intervals during summer and higher precipitation seasonality, and Drama representing a more temperate ecosystem). We simulated two different watering treatments (frequent vs. non-frequent) on beech seedlings, according to predicted monthly precipitation levels expected to prevail in 2050 by the CSIRO MK3.6 SRESA1B model, considering as reference area a natural beech stand in Mt. Rodopi, Greece. A series of morphological and stem anatomical traits were measured. Seedling survival was greater for the Evros population compared to that of Drama under non-frequent watering, while no difference in survival was detected under frequent watering. Leaf morphological traits were not generally affected by watering frequency except for leaf circularity, which was found to be lower under non-frequent watering for both populations. Stomata density in leaves was found to be higher in the Evros population and lower in the Drama population under non-frequent watering than frequent. Stem anatomical traits were higher under non-frequent watering for Evros but lower for the Drama population. Multivariate analyses clearly discriminated populations under non-frequent rather than frequent watering, indicating genetic adaptation to the population's environment of origin.

3.
Front Plant Sci ; 9: 1918, 2018.
Article in English | MEDLINE | ID: mdl-30671071

ABSTRACT

The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...