Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 25(1): 115-124, 2023.
Article in English | MEDLINE | ID: mdl-35450480

ABSTRACT

The present study was carried out to determine the impact of FA application on growth performance, biochemical parameters, and antioxidant defense activity of Calendula officinalis. The results revealed that under a low dose of FA (40%) amended soil, the plant growth performance and metal tolerance index (MTI) were increased compared to control plants and further decreased with increased FA application (60%, 80%, and 100% FA). In addition, the incorporation of 40% FA in soil not only improved the physicochemical properties of soil but also increased the biochemical parameters in the Calendula plant, however, these parameters declined under high FA applications. It was also observed that antioxidant enzyme activity (SOD, CAT, POD, and APX) in leaves of Calendula officinalis increased at high FA application (100% FA) to combat heavy metal stress from FA. The overall study suggests that 40% FA amended soil is the best suitable dose for growing Calendula officinalis and can be considered as metal tolerant species for phytoremediation of 40% FA amended soil.Novelty statement: Fly ash (FA) management is a major problem nowadays. The present study was carried out for FA utilization and to determine the impact of FA amended soil on growth performance, antioxidant properties, and biochemical attributes of Calendula officinalis. This is a sustainable approach in which waste (FA) utilization was done simultaneously with the enhancement in response of the medicinally potent Calendula species. The novelty of this study also suggests that Calendula has phytoremediation potential for remediation of heavy metal polluted soil. Further, the relationship between the growth, biochemical parameters, and antioxidant defense mechanism of Calendula grown on FA amended soil was studied which has not been studied so far. It was found that Calendula is a hyperaccumulator that can adapt to heavy metal stress from FA due to its ability to mitigate oxidative damage. Statistical analysis (ANOVA, Duncan's multiple range test, and PCA) was done for the results obtained using SPSS (11.5) and Origin 8 Pro software.


Subject(s)
Calendula , Metals, Heavy , Soil Pollutants , Antioxidants/analysis , Antioxidants/metabolism , Coal Ash/analysis , Coal Ash/metabolism , Calendula/metabolism , Soil/chemistry , Biodegradation, Environmental , Metals, Heavy/analysis , Soil Pollutants/metabolism
2.
Biotechnol Genet Eng Rev ; 38(1): 1-32, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35081881

ABSTRACT

Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.


Subject(s)
Environmental Pollutants , Xenobiotics , Biodegradation, Environmental , Metabolomics , Proteomics , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...