Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(38): e2220283120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695904

ABSTRACT

Research in both ecology and AI strives for predictive understanding of complex systems, where nonlinearities arise from multidimensional interactions and feedbacks across multiple scales. After a century of independent, asynchronous advances in computational and ecological research, we foresee a critical need for intentional synergy to meet current societal challenges against the backdrop of global change. These challenges include understanding the unpredictability of systems-level phenomena and resilience dynamics on a rapidly changing planet. Here, we spotlight both the promise and the urgency of a convergence research paradigm between ecology and AI. Ecological systems are a challenge to fully and holistically model, even using the most prominent AI technique today: deep neural networks. Moreover, ecological systems have emergent and resilient behaviors that may inspire new, robust AI architectures and methodologies. We share examples of how challenges in ecological systems modeling would benefit from advances in AI techniques that are themselves inspired by the systems they seek to model. Both fields have inspired each other, albeit indirectly, in an evolution toward this convergence. We emphasize the need for more purposeful synergy to accelerate the understanding of ecological resilience whilst building the resilience currently lacking in modern AI systems, which have been shown to fail at times because of poor generalization in different contexts. Persistent epistemic barriers would benefit from attention in both disciplines. The implications of a successful convergence go beyond advancing ecological disciplines or achieving an artificial general intelligence-they are critical for both persisting and thriving in an uncertain future.


Subject(s)
Artificial Intelligence , Lepidoptera , Animals , Ecosystem , Generalization, Psychological , Neural Networks, Computer
2.
NPJ Digit Med ; 6(1): 151, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596324

ABSTRACT

Images depicting dark skin tones are significantly underrepresented in the educational materials used to teach primary care physicians and dermatologists to recognize skin diseases. This could contribute to disparities in skin disease diagnosis across different racial groups. Previously, domain experts have manually assessed textbooks to estimate the diversity in skin images. Manual assessment does not scale to many educational materials and introduces human errors. To automate this process, we present the Skin Tone Analysis for Representation in EDucational materials (STAR-ED) framework, which assesses skin tone representation in medical education materials using machine learning. Given a document (e.g., a textbook in .pdf), STAR-ED applies content parsing to extract text, images, and table entities in a structured format. Next, it identifies images containing skin, segments the skin-containing portions of those images, and estimates the skin tone using machine learning. STAR-ED was developed using the Fitzpatrick17k dataset. We then externally tested STAR-ED on four commonly used medical textbooks. Results show strong performance in detecting skin images (0.96 ± 0.02 AUROC and 0.90 ± 0.06 F1 score) and classifying skin tones (0.87 ± 0.01 AUROC and 0.91 ± 0.00 F1 score). STAR-ED quantifies the imbalanced representation of skin tones in four medical textbooks: brown and black skin tones (Fitzpatrick V-VI) images constitute only 10.5% of all skin images. We envision this technology as a tool for medical educators, publishers, and practitioners to assess skin tone diversity in their educational materials.

3.
Patterns (N Y) ; 3(5): 100493, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35607616

ABSTRACT

Rapid advances in artificial intelligence (AI) and availability of biological, medical, and healthcare data have enabled the development of a wide variety of models. Significant success has been achieved in a wide range of fields, such as genomics, protein folding, disease diagnosis, imaging, and clinical tasks. Although widely used, the inherent opacity of deep AI models has brought criticism from the research field and little adoption in clinical practice. Concurrently, there has been a significant amount of research focused on making such methods more interpretable, reviewed here, but inherent critiques of such explainability in AI (XAI), its requirements, and concerns with fairness/robustness have hampered their real-world adoption. We here discuss how user-driven XAI can be made more useful for different healthcare stakeholders through the definition of three key personas-data scientists, clinical researchers, and clinicians-and present an overview of how different XAI approaches can address their needs. For illustration, we also walk through several research and clinical examples that take advantage of XAI open-source tools, including those that help enhance the explanation of the results through visualization. This perspective thus aims to provide a guidance tool for developing explainability solutions for healthcare by empowering both subject matter experts, providing them with a survey of available tools, and explainability developers, by providing examples of how such methods can influence in practice adoption of solutions.

4.
Entropy (Basel) ; 23(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34945877

ABSTRACT

The deployment of machine learning (ML) systems in applications with societal impact has motivated the study of fairness for marginalized groups. Often, the protected attribute is absent from the training dataset for legal reasons. However, datasets still contain proxy attributes that capture protected information and can inject unfairness in the ML model. Some deployed systems allow auditors, decision makers, or affected users to report issues or seek recourse by flagging individual samples. In this work, we examine such systems and consider a feedback-based framework where the protected attribute is unavailable and the flagged samples are indirect knowledge. The reported samples are used as guidance to identify the proxy attributes that are causally dependent on the (unknown) protected attribute. We work under the causal interventional fairness paradigm. Without requiring the underlying structural causal model a priori, we propose an approach that performs conditional independence tests on observed data to identify such proxy attributes. We theoretically prove the optimality of our algorithm, bound its complexity, and complement it with an empirical evaluation demonstrating its efficacy on various real-world and synthetic datasets.

5.
AMIA Annu Symp Proc ; 2020: 963-972, 2020.
Article in English | MEDLINE | ID: mdl-33936472

ABSTRACT

This study aimed at identifying the factors associated with neonatal mortality. We analyzed the Demographic and Health Survey (DHS) datasets from 10 Sub-Saharan countries. For each survey, we trained machine learning models to identify women who had experienced a neonatal death within the 5 years prior to the survey being administered. We then inspected the models by visualizing the features that were important for each model, and how, on average, changing the values of the features affected the risk of neonatal mortality. We confirmed the known positive correlation between birth frequency and neonatal mortality and identified an unexpected negative correlation between household size and neonatal mortality. We further established that mothers living in smaller households have a higher risk of neonatal mortality compared to mothers living in larger households; and that factors such as the age and gender of the head of the household may influence the association between household size and neonatal mortality.


Subject(s)
Infant Mortality , Africa South of the Sahara/epidemiology , Female , Humans , Infant , Infant, Newborn , Machine Learning , Male , Mothers , Surveys and Questionnaires
6.
Epidemics ; 27: 59-65, 2019 06.
Article in English | MEDLINE | ID: mdl-30902616

ABSTRACT

The recent Zika virus (ZIKV) epidemic in the Americas ranks among the largest outbreaks in modern times. Like other mosquito-borne flaviviruses, ZIKV circulates in sylvatic cycles among primates that can serve as reservoirs of spillover infection to humans. Identifying sylvatic reservoirs is critical to mitigating spillover risk, but relevant surveillance and biological data remain limited for this and most other zoonoses. We confronted this data sparsity by combining a machine learning method, Bayesian multi-label learning, with a multiple imputation method on primate traits. The resulting models distinguished flavivirus-positive primates with 82% accuracy and suggest that species posing the greatest spillover risk are also among the best adapted to human habitations. Given pervasive data sparsity describing animal hosts, and the virtual guarantee of data sparsity in scenarios involving novel or emerging zoonoses, we show that computational methods can be useful in extracting actionable inference from available data to support improved epidemiological response and prevention.


Subject(s)
Primates/virology , Zika Virus Infection/epidemiology , Zika Virus/pathogenicity , Zoonoses/epidemiology , Zoonoses/virology , Animals , Bayes Theorem , Humans , Risk , Zika Virus Infection/pathology , Zoonoses/pathology
7.
Big Data ; 5(3): 246-255, 2017 09.
Article in English | MEDLINE | ID: mdl-28933947

ABSTRACT

Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.


Subject(s)
Decision Making , Machine Learning , Safety , Algorithms , Machine Learning/economics
8.
Big Data ; 3(1): 41-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-27442844

ABSTRACT

Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.

9.
IEEE Trans Med Imaging ; 28(3): 469-74, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19244018

ABSTRACT

Arthroplasty, the implantation of prostheses into joints, is a surgical procedure that is affecting a larger and larger number of patients over time. As a result, it is increasingly important to develop imaging techniques to noninvasively examine joints with prostheses after surgery, both statically and dynamically in 3-D. The static problem is considered here, with the aim to create a 3-D shape model of the bone as well as the prosthesis using a set of 2-D X-rays from various viewpoints. The most important challenge to be addressed is the lack of texture, the most common feature to recover shape from multiple views. In order to overcome this limitation, we reformulate the problem using a novel multiview segmentation approach where an active contours 3-D surface evolution with level-set implementation is used to recover the shape of bones and prostheses in postoperative joints. The recovered shape may then be used to track 3-D motions in dynamic X-ray sequences to obtain kinematic information.


Subject(s)
Arthroplasty, Replacement, Knee , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Knee Joint/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Leg Bones/diagnostic imaging , Normal Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...