Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 617(7961): 533-539, 2023 May.
Article in English | MEDLINE | ID: mdl-37138076

ABSTRACT

Hormones in biological media reveal endocrine activity related to development, reproduction, disease and stress on different timescales1. Serum provides immediate circulating concentrations2, whereas various tissues record steroid hormones accumulated over time3,4. Hormones have been studied in keratin, bones and teeth in modern5-8 and ancient contexts9-12; however, the biological significance of such records is subject to ongoing debate10,13-16, and the utility of tooth-associated hormones has not previously been demonstrated. Here we use liquid chromatography with tandem mass spectrometry paired with fine-scale serial sampling to measure steroid hormone concentrations in modern and fossil tusk dentin. An adult male African elephant (Loxodonta africana) tusk shows periodic increases in testosterone that reveal episodes of musth17-19, an annually recurring period of behavioural and physiological changes that enhance mating success20-23. Parallel assessments of a male woolly mammoth (Mammuthus primigenius) tusk show that mammoths also experienced musth. These results set the stage for wide-ranging studies using steroids preserved in dentin to investigate development, reproduction and stress in modern and extinct mammals. Because dentin grows by apposition, resists degradation, and often contains growth lines, teeth have advantages over other tissues that are used as records of endocrine data. Given the low mass of dentin powder required for analytical precision, we anticipate dentin-hormone studies to extend to smaller animals. Thus, in addition to broad applications in zoology and palaeontology, tooth hormone records could support medical, forensic, veterinary and archaeological studies.


Subject(s)
Elephants , Fossils , Mammoths , Testosterone , Tooth , Animals , Male , Elephants/anatomy & histology , Elephants/metabolism , Mammoths/anatomy & histology , Mammoths/metabolism , Steroids/analysis , Steroids/metabolism , Testosterone/analysis , Testosterone/metabolism , Tooth/chemistry , Tooth/metabolism , Dentin/chemistry , Dentin/metabolism
3.
Sci Rep ; 11(1): 22051, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764401

ABSTRACT

Many polar species and habitats are now affected by man-made global climate change and underlying infrastructure. These anthropogenic forces have resulted in clear implications and many significant changes in the arctic, leading to the emergence of new climate, habitats and other issues including digital online infrastructure representing a 'New Artic'. Arctic grazers, like Eastern Russian migratory populations of Tundra Bean Goose Anser fabalis and Greater White-fronted Goose A. albifrons, are representative examples and they are affected along the entire flyway in East Asia, namely China, Japan and Korea. Here we present the best publicly-available long-term (24 years) digitized geographic information system (GIS) data for the breeding study area (East Yakutia and Chukotka) and its habitats with ISO-compliant metadata. Further, we used seven publicly available compiled Open Access GIS predictor layers to predict the distribution for these two species within the tundra habitats. Using BIG DATA we are able to improve on the ecological niche prediction inference for both species by focusing for the first time specifically on biological relevant population cohorts: post-breeding moulting non-breeders, as well as post-breeding parent birds with broods. To assure inference with certainty, we assessed it with 4 lines of evidence including alternative best-available open access field data from GBIF.org as well as occurrence data compiled from the literature. Despite incomplete data, we found a good model accuracy in support of our evidence for a robust inference of the species distributions. Our predictions indicate a strong publicly best-available relative index of occurrence (RIO). These results are based on the quantified ecological niche showing more realistic gradual occurrence patterns but which are not fully in agreement with the current strictly applied parsimonious flyway and species delineations. While our predictions are to be improved further, e.g. when synergetic data are made freely available, here we offer within data caveats the first open access model platform for fine-tuning and future predictions for this otherwise poorly represented region in times of a rapid changing industrialized 'New Arctic' with global repercussions.


Subject(s)
Geese/physiology , Animal Distribution , Animal Migration , Animals , Arctic Regions , Climate Change , Ecosystem , Models, Biological , Molting , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...