Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(13): 6489-6503, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005530

ABSTRACT

Advanced deposition routes are vital for the growth of functional metal-organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal-organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal-organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group C2/c and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.

2.
Chem Mater ; 36(1): 501-513, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222936

ABSTRACT

Quantum spin liquids are highly entangled magnetic states with exotic properties. The S = 1/2 square-lattice Heisenberg model is one of the foundational models in frustrated magnetism with a predicted, but never observed, quantum spin liquid state. Isostructural double perovskites Sr2CuTeO6 and Sr2CuWO6 are physical realizations of this model but have distinctly different types of magnetic order and interactions due to a d10/d0 effect. Long-range magnetic order is suppressed in the solid solution Sr2CuTe1-xWxO6 in a wide region of x = 0.05-0.6, where the ground state has been proposed to be a disorder-induced spin liquid. Here, we present a comprehensive neutron scattering study of this system. We show using polarized neutron scattering that the spin liquid-like x = 0.2 and x = 0.5 samples have distinctly different local spin correlations, which suggests that they have different ground states. Low-temperature neutron diffraction measurements of the magnetically ordered W-rich samples reveal magnetic phase separation, which suggests that the previously ignored interlayer coupling between the square planes plays a role in the suppression of magnetic order at x ≈ 0.6. These results highlight the complex magnetism of Sr2CuTe1-xWxO6 and hint at a new quantum critical point between 0.2 < x < 0.4.

3.
Inorg Chem ; 62(40): 16329-16342, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37756217

ABSTRACT

We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.

4.
Dalton Trans ; 50(44): 16133-16138, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34671785

ABSTRACT

Atomic/molecular layer deposition (ALD/MLD) is currently strongly emerging as an intriguing route for novel metal-organic thin-film materials. This approach already covers a variety of metal and organic components, and potential applications related to e.g. sustainable energy technologies. Among the 3d metal components, nickel has remained unexplored so far. Here we report a robust and efficient ALD/MLD process for the growth of high-quality nickel terephthalate thin films. The films are deposited from Ni(thd)2 (thd: 2,2,6,6-tetramethyl-3,5-heptanedionate) and terephthalic acid (1,4-benzenedicarboxylic acid) precursors in the temperature range of 180-280 °C, with appreciably high growth rates up to 2.3 Å per cycle at 200 °C. The films are amorphous but the local structure and chemical state of the films are addressed based on XRR, FTIR and RIXS techniques.

5.
Inorg Chem ; 60(15): 10923-10933, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34240868

ABSTRACT

A vacancy-ordered perovskite-type compound Ba3Fe3O8 (BaFeO2.667) was prepared by oxidizing BaFeO2.5 (P21/c) with the latter compound obtained by a spray pyrolysis technique. The structure of Ba3Fe3O8 was found to be isotypic to Ba3Fe3O7F (P21/m) and can be written as Ba3Fe3+2Fe4+1O8. Mössbauer spectroscopy and ab initio calculations were used to confirm mixed iron oxidation states, showing allocation of the tetravalent iron species on the tetrahedral site, and octahedral as well as square pyramidal coordination for the trivalent species within a G-type antiferromagnetic ordering. The uptake and release of oxygen were investigated over a broad temperature range from room temperature to 1100 °C under pure oxygen and ambient atmosphere via a combination of DTA/TG and variable temperature diffraction measurements. The compound exhibited a strong lattice enthalpy driven reduction to monoclinic and cubic BaFeO2.5 at elevated temperatures.

6.
Chemistry ; 27(38): 9763-9767, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33908660

ABSTRACT

A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO2.67 (Ba3 Co3 O8 □1 ) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering. From impedance measurements, the electronic conductivity of the order of 10-4  S cm-1 is determined. Remarkably, the bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is found to be comparable to that of Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-y , confirming that charge-ordered anion deficient non-cubic perovskites can be highly efficient catalysts.

7.
Chem Commun (Camb) ; 55(12): 1722-1725, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30656343

ABSTRACT

Multivariate data analysis is a promising tool for structure-property data mining and new-material prediction in the field of inorganic materials chemistry. Here we demonstrate its usability in assessing the magnetic properties of one of the most intriguing and plural functional inorganic material families, the ordered perovskite oxides of the A2B'B''O6 type.

8.
Chem Commun (Camb) ; 55(8): 1132-1135, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30628600

ABSTRACT

The isostructural double perovskites Ba2CuTeO6 and Ba2CuWO6 are shown by theory and experiment to be frustrated square-lattice antiferromagnets with opposing dominant magnetic interactions. This is driven by differences in orbital hybridisation of Te6+ and W6+. A spin-liquid-like ground state is predicted for Ba2Cu(Te1-xWx)O6 solid solution similar to recent observations in Sr2Cu(Te1-xWx)O6.

SELECTION OF CITATIONS
SEARCH DETAIL
...