Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 93: 104682, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37390772

ABSTRACT

BACKGROUND: RNA viruses account for many human diseases and pandemic events but are often not targetable by traditional therapeutics modalities. Here, we demonstrate that adeno-associated virus (AAV) -delivered CRISPR-Cas13 directly targets and eliminates the positive-strand EV-A71 RNA virus in cells and infected mice. METHODS: We developed a Cas13gRNAtor bioinformatics pipeline to design CRISPR guide RNAs (gRNAs) that cleave conserved viral sequences across the virus phylogeny and developed an AAV-CRISPR-Cas13 therapeutics using in vitro viral plaque assay and in vivo EV-A71 lethally-infected mouse model. FINDINGS: We show that treatment with a pool of AAV-CRISPR-Cas13-gRNAs designed using the bioinformatics pipeline effectively blocks viral replication and reduces viral titers in cells by >99.99%. We further demonstrate that AAV-CRISPR-Cas13-gRNAs prophylactically and therapeutically inhibited viral replication in infected mouse tissues and prevented death in a lethally challenged EV-A71-infected mouse model. INTERPRETATION: Our results show that the bioinformatics pipeline designs efficient CRISPR-Cas13 gRNAs for direct viral RNA targeting to reduce viral loads. Additionally, this new antiviral AAV-CRISPR-Cas13 modality represents an effective direct-acting prophylactic and therapeutic agent against lethal RNA viral infections. FUNDING: Agency for Science, Technology and Research (A∗STAR) Assured Research Budget, A∗STAR Central Research Fund UIBR SC18/21-1089UI, A∗STAR Industrial Alignment Fund Pre-Positioning (IAF-PP) grant H17/01/a0/012, MOE Tier 2 2017 (MOE2017-T2-1-078; MOE-T2EP30221-0005), and NUHSRO/2020/050/RO5+5/NUHS-COVID/4.


Subject(s)
COVID-19 , Enterovirus A, Human , Enterovirus , Humans , Mice , Animals , CRISPR-Cas Systems , Dependovirus/genetics , COVID-19/genetics , Enterovirus/genetics , Enterovirus A, Human/genetics
2.
Diagnostics (Basel) ; 12(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36553167

ABSTRACT

The testing capacity of the laboratory is paramount for better control of the pandemic caused by SARS-CoV-2. The pooling method is promising to increase testing capacity, and the use of direct NAAT-based detection of SARS-CoV-2 on a non-invasive specimen such as saliva will ultimately accelerate the testing capacity. This study aims to validate the pooling-of-four method to quadruple the testing capacity using RNA-extraction-free saliva specimens. In addition, we intend to investigate the preferable stage of pooling, including pre- or post-heating. The compatibility of this approach was also tested on five commercial kits. Saliva specimens stored at -80 °C for several months were proven viable and were used for various tests in this study. Our findings revealed that pooling-of-four specimens had an overall agreement rate of 98.18% with their individual testing. Moreover, we proved that the pooling procedure could be conducted either pre- or post-heating, with no discordance and no significant difference in Ct values generated. When compared to other commercial detection kits, it demonstrated an overall agreement greater than 85%, which exhibits broad compatibility and ensures easy adaptability in clinical settings. This method has been proven reliable and increases the testing capacity up to fourfold.

3.
Front Cell Infect Microbiol ; 11: 691538, 2021.
Article in English | MEDLINE | ID: mdl-34485174

ABSTRACT

Saliva as a sample matrix has been an attractive alternative for the detection of SARS-CoV-2. However, due to potential variability in collection and processing steps, evaluating a proposed workflow amongst the local population is recommended. Here, we aim to validate the collection and treatment of human saliva as a direct specimen for RT-qPCR-based detection of SARS-CoV-2 in Indonesia. We demonstrated that SARS-CoV-2 target genes were detected in saliva specimens and remained stable for five days either refrigerated or stored at room temperature. The method of processing saliva specimens described in this report bypasses the need for an RNA-extraction process, thereby reducing the cost, time, and manpower required for processing samples. The developed method was tested across nine commercial kits, including the benchmark, to demonstrate its wide applicability on multiple existing workflows. Our developed method achieved an 86% overall agreement rate compared to paired nasopharyngeal and oropharyngeal swab specimens (NPOP). With the assistance of a saliva sampling device, the collection was found to be more convenient for individuals and improved the overall agreement rate to 97%.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Indonesia , Nasopharynx , RNA, Viral/genetics , Saliva , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...